期刊文献+

高速磁悬浮用直线同步电机电流控制策略研究

Research on Current Control Strategy of Linear Synchronous Motor for High Speed Maglev
下载PDF
导出
摘要 高速磁悬浮列车采用直线同步电机作为其驱动装置,其电流控制效果直接影响列车运行稳定性及舒适性。针对直线电机功率较大的特点,单相驱动时采用多H桥串联方案,并可实现高低速运行时驱动拓扑切换,矢量控制中电机电流经过坐标变换后dq轴电流存在严重的交叉耦合,并且耦合分量随着车速的增加不断增大,从而降低了电流控制性能。为了提升电机动态控制效果,提出复矢量电流控制方法,并采用虚拟电阻解决了不同调制方式下电流振荡问题,通过半实物仿真平台对控制性能进行了验证,仿真和实验结果表明了电流控制策略的可行性和有效性。 The high speed maglev train adopts linear synchronous motor as its driving device,whose current control effect directly affects the stability and comfort of the train.In view of the characteristics of large power of linear motor,the multi H-bridge series scheme is used in single-phase drive,and the drive topology switching can be realized when running at high and low speeds,and there is serious cross-coupling of the dq axis current after the coordinate transformation of the motor current in vector control,and the coupling component increases with the increase of vehicle speed,thereby reducing the current control performance.In order to improve the effect of motor dynamic control,a complex vector current control method is proposed,and the current oscillation under different modulation methods is solved by virtual re-sistance.The control performance is verified by the semi-physical simulation platform,and the simulation and experimental results show the feasibility and effectiveness of the current control strategy.
作者 宋君健 徐文婧 李韵楠 刘佳伟 王闯 SONG Jun-jian;XU Wen-jing;LI Yun-nan;LIU Jia-wei;WANG Chuang(CRRC Dalian R&D Co.,Ltd,Dalian 116052,China)
出处 《电工电气》 2024年第1期21-26,共6页 Electrotechnics Electric
关键词 高速磁悬浮 直线同步电机 复矢量电流控制 虚拟电阻 H桥串联 high speed maglev linear synchronous motor complex vector current control virtual resistance H-bridge series
  • 相关文献

参考文献3

二级参考文献20

  • 1郑琼林,林飞.现代轨道交通与交流传动互馈试验台[J].电工技术学报,2005,20(1):21-25. 被引量:26
  • 2Rowan T M, R J Kerkman. A new synchronous current regulator and an analysis of current- regulatedPWM inverters[J]. IEEE Transactions on Industry Applications, 1986,22(4): 678-690.
  • 3Briz F, Degner M W, et al. Analysis and design of current regulators using complex vectors[J]. IEEETransactions on Industry Applications, 2000,36(3): 817-825.
  • 4Holtz J, Juntao Q, et al. Design of fast and robust current regulators for high-power drives based oncomplex state variables[J]. IEEE Transactions on Industry Applications, 2004, 40(5): 1388-1397.
  • 5Jinhwan J, Kwanghee N. A dynamic decoupling control scheme for high-speed operation of inductionmotors[J]. IEEE Transactions on Industrial Electronics, 1999, 46(1): 100-110.
  • 6Harnefors L, Nee H P. Model-based current control of AC machines using the internal model controlmethod[J]. IEEE Transactions on Industry Applications, 1998, 34(1): 133-141.
  • 7Dong Choon L, Seung S Ki, et al. High performance current regulator for a field-oriented controlledinduction motor drive[J]. IEEE Transactions on Industry Applications, 1994, 30(5): 1247-1257.
  • 8Monmasson E, Cirstea M N.FPGA design methodology for industrial control systems--a review[J]. IEEETransactions on Industrial Electronics, 2007,54(4): 1824-1842.
  • 9Bode G H, Loh P C, et al. An improved robust predictive current regulation algorithm[J].IEEETransactions on Industry Applications, 2005,41(6): 1720-1733.
  • 10Blasko V, Kaura V, Niewiadomski W. Sampling of discontinuous voltage and current signals in electricaldrives: a system approach[J]. IEEE Transactions onIndustry Applications, 1998, 34(5): 1123-1130.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部