期刊文献+

基于GSVD的分布式MIMO雷达测向算法

GSVD-based distributed MIMO radar direction finding algorithm
下载PDF
导出
摘要 针对分布式多输入多输出(multi-input multi-output,MIMO)雷达测向中存在的数据信息提取不充分、运算量偏大等问题,开展了基于广义奇异值分解(generalized singular value decomposition,GSVD)的测向算法研究,以提高低信噪比条件下的角度估计性能。首先,建立了分布式阵列MIMO雷达回波信号的统一化表征模型;其次,将分布式MIMO雷达系统接收阵列数据的多线程GSVD问题转换为一个联合优化问题,运用交替最小二乘(alternating least squares,ALS)技术实现阵列信号流行矩阵的拟合,并引入子空间类算法实现目标角度联合估计;最后,对优化问题增加l1范数约束,避免了每次迭代中进行的奇异值分解运算,降低了算法运算量。仿真实验从角度联合估计、均方误差、运算时间等方面验证了所提算法的有效性。 In order to solve insufficient data information extraction and large amount of operations in distributed multi-input multi-output(MIMO)radar direction-finding,this paper studied the direction-finding algorithm based on generalized singular value decomposition(GSVD),so as to improve the performance of target angle estimation under low signal-tonoise ratio(SNR).Firstly,the distributed MIMO radar echo signal model was established.Then,the multilinear GSVD problem of the receiving array data was converted into an optimization problem and alternating least squares(ALS)algorithm was applied to solve it,achieving the fitting of channel matrix.Besides,the subspace algorithm was introduced to realize the joint estimation of the target angles.Finally,the l1 constraint was provided to avoid the singular value decomposition operation in each iteration and the computational complexity was reduced.Simulation experiments have demonstrated that the effectiveness of the proposed algorithm in terms of joint angle estimation,mean square error and operation time.
作者 张颢月 师俊朋 史姝赟 吴奇龙 ZHANG Haoyue;SHI Junpeng;SHI Shuyun;WU Qilong(College of Electronic Engineering,National University of Defense Technology,Hefei 230037,China;Anhui Provincial Military Region,Hefei 230001,China)
出处 《信息对抗技术》 2024年第1期57-69,共13页 Information Countermeasures Technology
基金 国家自然科学基金资助项目(62071476) 湖南省科技创新计划项目(2021RC3080) 国防科技大学学校科研计划项目(ZK20-33) 国防科技大学自主创新基金项目(23-ZZCX-JDZ-45)。
关键词 分布式MIMO雷达 广义奇异值分解 阵列测向 交替最小二乘 distributed MIMO radar GSVD array direction-finding ALS
  • 相关文献

参考文献2

二级参考文献33

  • 1Fishier E, Haimovich A, Blum R, Chizhik D, Cimini L and Valen- zuela R 2004 IEEE Radar Conference, April 26-29, 2004, Philadel- phia, Pennsylvania, p. 71.
  • 2Xiao S, Cai J J, Wang R L, Liu M Z and Liu F 2009 Chin. Phys. B 18 5103.
  • 3Huang C, Zhang D J, Zhang D L and Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese).
  • 4Larsson E G, Edfors O, Tufvesson F and Marzetta T L 2014 IEEE Com- mun. Mag. 52 186.
  • 5Duan H P, Ng B P, See C M S and Fang J 2008 1EEE Trans. Signal Process. 56 2406.
  • 6Wen F Q and Zhang G 2013 Math. Prob. Eng. 2013 427980.
  • 7Rossi M, Haimovich A M and Eldar Y C 2014 IEEE Trans. Signal Process. 62 419.
  • 8Schmidt R O 1986 IEEE Trans. Antennas Propag. 34 276.
  • 9Roy R and Kailath 1989 IEEE Trans. Acous. Speech Signal Process. 37 984.
  • 10Cotter S F, Rao B D, Engan K and Kenneth K D 2005 IEEE Trans. Signal Process. 53 2477.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部