期刊文献+

基于麻雀搜索算法的电力物资绿色供应链协调优化方法

A Coordination and Optimization Method for Green Supply Chain of Electric Power Materials Based on Sparrow Search Algorithm
下载PDF
导出
摘要 为保证电力市场中相关企业的稳定、合理收益,引进麻雀搜索算法,对电力物资绿色供应链的协调优化方法展开设计研究。建立电力物资三级绿色供应链模型,对绿色供应链中参与方、关键节点之间的关系进行分析。根据麻雀所具有的群居特性,对群居行为进行仿真优化,以此为依据,实现绿色供应链中局部需求的检索更新。根据绿色供应链中电网企业的需求,将三级参与方最大利润系数作为目标,采用建立目标函数的方式,实现对集中型绿色供应链的协调决策。实验结果表明,按照规范使用的方法进行电力物资绿色供应链协调优化,可以有效控制电力物资供应成本,以此种方式确保供应链中电力企业的稳定收益与持续化盈利。 In order to ensure the stable and reasonable returns of relevant enterprises in the electricity market,the sparrow search algorithm is introduced to design and study the coordination and optimization method of the green supply chain of electricity materials.A three-level green supply chain model for power supplies is established,and the relationships between participants and key nodes in the green supply chain is analyzed.Based on the social characteristics of sparrows,simulation and optimization of social behavior are carried out to achieve retrieval and update of local demand in the green supply chain.Based on the needs f power grid enterprises in the green supply chain,the maximum profit coefficient of the third level participants is set as the goal,and the goal function is established to achieve coordinated decision-making for a centra-lized green supply chain.The experimental results indicate that coordinating and optimizing the green supply chain of power supplies using standardized methods can effectively control the supply cost of power supplies,and in this way,ensure the stable and sustainable profitability of po-wer enterprises in the supply chain.
作者 高扬 赵朋 李晶洁 公昊 GAO Yang;ZHAO Peng;LI Jingjie;GONG Hao(State Grid Jibei Electric Power Co.,Ltd.,Material Branch,Beijing 100075,China)
出处 《科技和产业》 2023年第23期154-157,共4页 Science Technology and Industry
关键词 麻雀搜索算法 供应链模型 局部更新 协调优化 绿色供应链 电力物资 sparrow search algorithm supply chain model local updates coordination and optimization green supply chain electric power materials
  • 相关文献

参考文献15

二级参考文献159

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部