摘要
文中研究基于模糊层次聚类的大学生就业数据分类存储系统,在总体设计上,通过模糊层次聚类技术构建系统框架,设计4个功能模块对应就业信息分类存储模式,满足大学生就业信息流转形式;以一一对应关系设置大学生就业信息数据分类存储结构,基于所属关系关联大学生的基本信息。在详细设计中,按照数据存储表和字典表两个类型构建大学生就业信息数据库;选择模糊层次聚类算法计算数据隶属值,设定信息数据聚类流程,实现大学生就业信息数据的分类存储,完成系统设计。实验结果表明:以多个专业的大学生就业人数作为数据样本,新系统即可实现不同专业类型大学生就业数据的精准存储,且分类存储时间能够保证在10 s之内,该系统具有很好的实际应用价值。
A college students′employment data classification and storage system based on fuzzy hierarchical clustering is proposed.In terms of overall design,the system framework is constructed by fuzzy hierarchical clustering technology,and four functional modules are designed to correspond to the classification and storage mode of employment information,so as to satisfy the flow form of college students′employment information.The classification and storage structure of college students′employment information data is set up in the one⁃to⁃one correspondence relationship,and the basic information of college students is associated based on the ownership relationship.In the detailed design,the college students′employment information database is constructed according to the two types of data storage table and dictionary table.The fuzzy hierarchical clustering algorithm is chosen to calculate the data membership value and set the information data clustering process,so as to realize the classification and storage of college students′employment information data and complete the system design.The experimental results show that the proposed system can realize accurate storage of employment data of college students of different majors,and the classification storage time can be kept within 10 seconds.Therefore,the proposed system has high application value.
作者
蒋大锐
徐胜超
JIANG Darui;XU Shengchao(School of Data Science,Guangzhou Huashang College,Guangzhou 511300,China)
出处
《现代电子技术》
北大核心
2024年第3期123-129,共7页
Modern Electronics Technique
基金
国家自然科学基金面上项目(61772221)
广州华商学院校内导师制科研项目资助(2023HSDS08)。
关键词
模糊层次聚类
大学生就业信息数据
分类存储系统
信息膨胀
数据隶属值
信息流转
fuzzy hierarchical clustering
college students′employment information data
classification and storage system
information inflation
data membership value
information flow