摘要
As the main organic acid in fruits,malate is produced in the cytoplasm and is then transported into the vacuole.It accumulates by vacuolar proton pumps,transporters,and channels,affecting the taste and flavor of fruits.Among the three types of proton pumps(V-ATPases,V-PPases,and P-ATPases),the P-ATPases play an important role in the transport of malate into vacuoles.In this study,the transcriptome data,collected at different stages after blooming and during storage,were analyzed and the results demonstrated that the expression of MdPH5,a vacuolar proton-pumping P-ATPase,was associated with both pre-and post-harvest malate contents.Moreover,MdPH5 is localized at the tonoplast and regulates malate accumulation and vacuolar pH.In addition,MdMYB73,an upstream MYB transcription factor of MdPH5,directly binds to its promoter,thereby transcriptionally activating its expression and enhancing its activity.In this way,MdMYB73 can also affect malate accumulation and vacuolar pH.Overall,this study clarifies how MdMYB73 and MdPH5 act to regulate vacuolar malate transport systems,thereby affecting malate accumulation and vacuolar pH.
出处
《aBIOTECH》
EI
CAS
CSCD
2023年第4期303-314,共12页
生物技术通报(英文版)
基金
supported by grants from the National Key Research and Development Program of China(2022YFD2100102)
National Natural Science Foundation of China(32122080,31972375)
Shandong Province(ZR2020YQ25).