期刊文献+

SFTSV重组假病毒的构建及Gc糖基化对病毒感染力的影响

Construction of severe fever with thrombocytopenia syndrome virus recombinant pseudoviruses and effect of Gc glycosylation on viral infectivity
原文传递
导出
摘要 目的为探究发热伴血小板减少综合征病毒(SFTSV)中Gc及其N-糖基化位点与病毒感染性的关系,构建了含有SFTSV Gc糖基化位点突变体的重组假病毒。方法利用定点突变和同源重组技术构建了SFTSV Gc及3个N-糖基化位点突变的真核表达载体pcDNA3.1(+)-Gc、pcDNA3.1(+)-Gc(N291Q)、pcDNA3.1(+)-Gc(N352Q)和pcDNA3.1(+)-Gc(N374Q)。验证其在293T细胞中成功表达后,感染VSVΔG-Fluc*G假病毒,构建4株重组假病毒并检测其对细胞感染力的影响。结果双酶切鉴定和序列测定证实成功构建真核表达载体pcDNA3.1(+)-Gc、pcDNA3.1(+)-Gc(N291Q)、pcDNA3.1(+)-Gc(N352Q)和pcDNA3.1(+)-Gc(N374Q)。间接免疫荧光和Western blot结果表明4个重组质粒均成功表达。SFTSV Gc重组假病毒对Vero细胞有感染特异性。糖基化位点突变后假病毒感染能力明显降低,且352位糖基化位点突变株感染水平最低(P<0.001、P=0.001)。结论SFTSV Gc的糖基化位点可能与病毒的感染力相关,且第352位氨基酸突变后,对病毒感染力影响最大。 Objective To explore the relationship between severe fever with thrombocytopenia syndrome virus(SFTSV)Gc and its N-glycosylation site and viral infectivity,a recombinant pseudovirus containing SFTSV Gc glycosylation site mutant was constructed.Methods The eukaryotic expression vectors pcDNA3.1(+)-GC,PCDNA3.1(+)-GC(N291Q),PCDNA3.1(+)-GC(N352Q)and PCDNA3.1(+)-GC(N374Q)were constructed by site-directed mutagenesis and homologous recombination.After their successful expression in 293T cells,we infected VSVΔG-Fluc*G pseudovirus,constructed four recombinant pseudoviruses and tested their effects on the cell force of infection.Results Double digestion identification and sequence determination confirmed the successful construction of eukaryotic expression vectors pcDNA3.1(+)-Gc,pcDNA3.1(+)-Gc(N291Q),pcDNA3.1(+)-Gc(N352Q)and pcDNA3.1(+)-Gc(N374Q).Indirect immunofluorescence and Western Blotting result indicated the successful expression of all the four recombinant plasmids.SFTSV Gc recombinant pseudoviruses are specific for infecting Vero cells.Pseudovirus infection capacity was decreased significantly after the glycosylation site mutation,and the mutant strain with the glycosylation site at position 352 had the lowest level of infectivity(P<0.001,P=0.001).Conclusions The glycosylation site of SFTSV Gc may be associated with the infectious effect of the viral infection,and the amino acid mutation at position 352 has the greatest effect on the viral infectivity.
作者 崇小文 王泽群 陈梦婷 杜蒙育 徐小莹 马有祥 温红玲 Chong Xiaowen;Wang Zequn;Chen Mengting;Du Mengyu;Xu Xiaoying;Ma Youxiang;Wen Hongling(Department of Microbiological Laboratory Technology,School of Public Health,Cheeloo College of Medicine,Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong,Shandong University,Jinan 250012,China;Dongying Municipal Center for Disease Control and Prevention,Dongying 257091,China)
出处 《中华实验和临床病毒学杂志》 CAS CSCD 2023年第6期583-591,共9页 Chinese Journal of Experimental and Clinical Virology
基金 山东省自然科学基金(ZR2022MH130)。
关键词 发热伴血小板减少综合征病毒 GC 假病毒 糖基化位点 Severe fever with thrombocytopenia syndrome virus Gc Pseudovirus Glycosylation site
  • 相关文献

参考文献7

二级参考文献48

  • 1常华,花群义,段纲.非洲猪瘟病毒的分子生物学研究进展[J].微生物学通报,2007,34(3):572-575. 被引量:25
  • 2Xu B, Liu L, Huang X, et al. Metagenomic analysis of fever, thrombocytopenia and leukopenia syndrome (FTLS) in Henan province, China: discovery of a new bunyavirus. PLoS Pathog, 2011,7 ( 11 ) : e1002369.
  • 3Crabtree MB,Sang R, Mi|ler BR. Kupe virus, a new virus in the family bunyaviridae, genus nairovirus, kenya. Emerg Infect Dis, 2009,15(2) :147-154.
  • 4Dzagurova TK, Witkowski PT, Tkachenko EA, et al. Isolation of sochi virus from a fatal case of hantavirus disease with fulminant clinical course [ EB/OL ]. [ 2011-11-151. http ://www. ncbi. nlm. nih. gov/pubmed/22042875.
  • 5Lambert AJ, Lanciotti RS. Consensus amplification and novel muhiplex sequencing method for S segment species identification of 47 viruses of the orthobunyavirus, Phlebovims, and Nairovirus genera of the family Bunyaviridae. J Clin Mierobio1,2009,47 (8) : 2398-2404.
  • 6Yu X J, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med,2011, 364(16) : 1523-1532.
  • 7Maes P,Clement J,Van Ranst M. Recent approaches in hantavirus vaccine development[J].Expert Review of Vaccines,2009,(01):67-76.doi:10.1586/14760584.8.1.67.
  • 8Battisti AJ,Chu YK,Chipman PR. Structural studies of Hantaan virus[J].Journal of Virology,2011,(02):835-841.
  • 9Schmaljohn CS,Schmaljohn AL,Dalrymple JM. Hantaan virus M RNA:coding strategy,nucleotide sequence,and gene order[J].Virology,1987,(01):31-39.
  • 10Hepojoki J,Strandin T,Lankinen H. Hantavirus structure-molecular interactions behind the scene[J].Journal of General Virology,2012,(Pt8):1631-1644.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部