摘要
为提高大气温度测量的准确度,本文设计了一种新型地面气温观测系统并推导了相应的辐射误差修正方程。首先,利用计算流体动力学(CFD)方法对该测温系统进行结构优化设计以及辐射误差量化计算。然后,利用BP神经网络算法拟合可针对多变量变化的辐射误差修正方程。最后,以076B型强制通风测温仪器的测量值作为温度基准,验证该测温系统的测温精度。实验结果表明,该新型地面气温观测系统的测量值与基准温度的均方根误差(RMSE)和绝对误差(MAE)分别为0.031℃和0.041℃。
To improve the observation accuracy,a new near-surface temperature observation system and a radiation error correction equation are proposed in this paper.First,a Computational Fluid Dynamics(CFD)method was used to optimize the structure of the temperature measuring system and used to quantify the radiation error.Then,a radiation error correction equation can be obtained by using the BP neural network algorithm.Finally,field observation comparison experiments were performed to verify the accuracy of the new temperature observation system.A 076B forced ventilation temperature observation instrument served as a temperature reference during the experiments.The experimental results show that the Root Mean Square Error(RMSE)and the Mean Absolute Error(MAE)between the measurement values of the new observation system and the reference temperatures are 0.031℃and 0.041℃,respectively.
作者
葛祥建
杨杰
张道远
恽雨涵
丁仁惠
沈瑱
GE Xiangjian;YANG Jie;ZHANG Daoyuan;YUN Yuhan;DING Renhui;SHEN Zhen(Jiangsu Key Laboratory of Meteorological Observation and Information Processing,Nanjing University of Information Science&Technology,Nanjing 210044,China;Jiangsu Meteorological Observation Center,Nanjing 210009,China)
出处
《气象科学》
北大核心
2023年第6期829-837,共9页
Journal of the Meteorological Sciences
基金
国家公益性行业(气象)科研专项资助项目(GYHY200906037)
国家自然科学基金面上资助项目(41875035,41905030)
江苏省研究生科研与实践创新计划资助项目(SJCX21_0353)
江苏省高等学校大学生创新创业训练计划资助项目(202110300063Y)
江苏省气象局青年基金资助项目(KQ202107)。
关键词
地面气温观测
辐射误差
计算流体动力学
BP神经网络
surface air temperature observation
radiation error
computational fluid dynamics
BP neural network