摘要
出租车轨迹反映地区的热点强度和交通拥堵程度,在居民出行、交通管理、商业选址等方面得到广泛的应用。利用北京市出租车轨迹数据实现了不同区域道路车频监测,提出了改进的OD矩阵(Origin-destination Matrix)算法实现了车辆轨迹信息的提取和鉴别。该算法在原有OD矩阵算法基础上增加了区域密度分析、数据清除干扰和函数模型的转换,解决了原先使用OD矩阵不确定性及复杂性问题,提高了商业空间选址推荐精度。算法通过Google Earth地图对所选区域进行结果验证,其商业推荐精度优于原算法。
Taxi tracks reflect the intensity of hotspots and the degree of traffic congestion in a region.It has been widely applied in residents'travel,traffic management,and commercial site selection.Beijing taxi track data were used to realize vehicle frequency monitoring in different regions,and improved Origin-destination Matric(IOD)was proposed to extract and identify the vehicle track information.The improved method added an analysis of the area density and removed the interference data.The algorithm solved the uncertainty and complexity of the Origin-destination Matric,improved the recommendation accuracy of commercial space location by function transformation model.The results of the algorithm are verified by Google Earth map and the commercial recommendation accuracy of the IOD algorithm is better than the original OD.
作者
王文康
王玉亮
付瑞阳
郭宏婷
Wang Wenkang;Wang Yuliang;Fu Ruiyang;Guo Hongting
出处
《滁州学院学报》
2023年第5期46-55,共10页
Journal of Chuzhou University
基金
安徽省住房城乡建设科学技术计划项目“面向‘双碳’目标的长三角城市群绿地空间多尺度遥感评价和格局优化研究”(2022-YF107)
安徽省高等学校自然科学研究重点项目“大规模城市群绿地空间时空变化遥感智能监测关键技术与应用”(2022AH051119)。
关键词
出租车轨迹活跃度
OD矩阵
商业空间选址
taxi track activity
improved Origin-destination Matrix
commercial space location