期刊文献+

基于出租车轨迹活跃度的北京市商业空间选址推荐

Commercial Space Location Recommendation of Beijing by Taxi Trajectory Activity
下载PDF
导出
摘要 出租车轨迹反映地区的热点强度和交通拥堵程度,在居民出行、交通管理、商业选址等方面得到广泛的应用。利用北京市出租车轨迹数据实现了不同区域道路车频监测,提出了改进的OD矩阵(Origin-destination Matrix)算法实现了车辆轨迹信息的提取和鉴别。该算法在原有OD矩阵算法基础上增加了区域密度分析、数据清除干扰和函数模型的转换,解决了原先使用OD矩阵不确定性及复杂性问题,提高了商业空间选址推荐精度。算法通过Google Earth地图对所选区域进行结果验证,其商业推荐精度优于原算法。 Taxi tracks reflect the intensity of hotspots and the degree of traffic congestion in a region.It has been widely applied in residents'travel,traffic management,and commercial site selection.Beijing taxi track data were used to realize vehicle frequency monitoring in different regions,and improved Origin-destination Matric(IOD)was proposed to extract and identify the vehicle track information.The improved method added an analysis of the area density and removed the interference data.The algorithm solved the uncertainty and complexity of the Origin-destination Matric,improved the recommendation accuracy of commercial space location by function transformation model.The results of the algorithm are verified by Google Earth map and the commercial recommendation accuracy of the IOD algorithm is better than the original OD.
作者 王文康 王玉亮 付瑞阳 郭宏婷 Wang Wenkang;Wang Yuliang;Fu Ruiyang;Guo Hongting
出处 《滁州学院学报》 2023年第5期46-55,共10页 Journal of Chuzhou University
基金 安徽省住房城乡建设科学技术计划项目“面向‘双碳’目标的长三角城市群绿地空间多尺度遥感评价和格局优化研究”(2022-YF107) 安徽省高等学校自然科学研究重点项目“大规模城市群绿地空间时空变化遥感智能监测关键技术与应用”(2022AH051119)。
关键词 出租车轨迹活跃度 OD矩阵 商业空间选址 taxi track activity improved Origin-destination Matrix commercial space location
  • 相关文献

参考文献11

二级参考文献63

  • 1李佳蓉,夏昊,张迎,乔彦友.城市居民出行O/D时空分布特征的轨迹数据提取[J].测绘科学,2020,45(2):150-158. 被引量:8
  • 2王炜,孙俊.大型交通网络OD矩阵推算方法研究[J].东南大学学报(自然科学版),1996,26(6):47-54. 被引量:15
  • 3赵亦林.车辆定位与导航[M].北京:电子工业出版社,1999..
  • 4於志文,周兴社,郭斌.移动社交网络中的感知计算模型、平台与实践[J].中国计算机学会通讯,2012,8(5):15-20.
  • 5Zheng Y. Location-based social networks: Users [ M]//Compu- ting with Spatial Trajectories. Springer, New York, 2011:243- 276.
  • 6Karamshuk D, Noulas A, Scellato S, et al. Geo-spotting: mining online location-based services for optimal retail store placement [C]//Proceedings of the 19th ACM SIGKDD International Con- ference on Knowledge Discovery and Data Mining. ACM, 2013: 793-801.
  • 7Jensen P. Analyzing the localization of retail stores with complex systems tools[M]//Advances in Intelligent Data Analysis VIII. Springer Berlin Heidelberg, 2009 .. 10-20.
  • 8Yu Z,Zhang D,Yang D. Where is the Largest Market:Ranking Areas by Popularity from Location Based Social Networks[C]// Ubiquitous Intelligence and Computing, 2013 IEEE 10th Inter- national Conference on and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC). IEEE, 2013:157-162.
  • 9http://dev.jiepang.com.
  • 10http://developer.baidu.com/map.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部