期刊文献+

基于随机森林回归的船舶特涂维修的日能耗预测 被引量:1

Prediction of daily energy consumption for ship special coating maintenance based on stochastic forest regression
下载PDF
导出
摘要 特殊涂装(简称特涂)维修是修船工作的核心内容,能耗的预测是船舶智能能效优化中的一项重要任务。使用随机森林回归(RFR)模型对船舶特涂维修日能耗进行分析,去除异常值、随机化和标准化数据集,然后使用RFR模型对船舶日能耗历史数据进行训练拟和,利用带交叉验证的网格搜索优化RFR模型,使用优化后的RFR模型对船舶特涂维修日能耗数据进行分析,并与其他模型进行对比实验。结果表明,优化后的RFR模型预测效果优于多种其他模型,R2值达93.25%,均方误差明显更低。 Predicting energy consumption is an important task in the intelligent energy efficiency optimization of ship maintenance,with special coating(spec coat)being the core aspect.In this experiment,the random forest regression(RFR)model was employed to analyze the daily energy consumption of ship maintenance for special coating.The dataset was preprocessed by removing outliers,randomizing and standardizing the data.Subsequently,the RFR model was trained and fitted using historical data of daily energy consumption in ship maintenance.The RFR model was optimized using grid search with cross-validation,and analysis of daily energy consumption data for ship special coating maintenance using optimized RFR model.Comparative experiments were conducted with other models.The results revealed that the optimized RFR model outperformed several other models,achieving an R-squared value of 93.25%and significantly lower mean squared error(MSE).
作者 甘瑞平 任新民 姜军 李鹏 周小兵 GAN Ruiping;REN Xinmin;JIANG Jun;LI Peng;ZHOU Xiaobing(School of Information Science&Engineering,Yunnan University,Kunming 650504,China;You Lian Dockyards(Shekou)Co.,Ltd.,Shenzhen 518067,China;Info Robot Co.,Ltd.,Shenzhen 518216,China)
出处 《大数据》 2024年第1期170-184,共15页 Big Data Research
基金 深圳大学稳定保障计划项目(No.20200829114939001) 深圳信息职业技术学院校级创新科研团队项目(No.TD2020E001) 珠江三角洲水资源配置工程科研项目(No.CD88-QT01-2022-0068)。
关键词 能耗预测 随机森林回归 LOF算法 船舶特涂 energy consumption prediction random forest regression LOF algorithm ship special coating
  • 相关文献

参考文献6

二级参考文献51

  • 1Singhal N, Dev AK. SEEMP: Energy Management and the Shipping Industry[C]// Proceedings of 5th International Conference on Technology and Operation of offshore Support Vessels. 2013.
  • 2IMO. Resolution MEPC.213(63), Guidelines for the Development of a Ship Efficiency Management Plan (SEEMP)[S]. 2012.
  • 3IMO. Resolution MEPC.214(63), Guidelines on survey and certification of the Energy Efficiency Design Index(EEDI)[S]. 2012.
  • 4Autere P, Heikkinen A, Kovanen L. Data Presentation and Reporting Techniques for Decision Making[C]// l lth International Conference on Computer and IT Applications in the Maritime Industries, Liege. 2012.
  • 5Journre J M J, Rijke R J, Verleg G J H. Marine Performance Surveillance with a Personal Computer[R]. 1987.
  • 6Petersen J P, Winther O, Jacobsen D J. A Machine- Learning Approach to Predict Main Energy Consumption under Realistic Operational Conditions[J]. Ship Technology Research, 2012, 59(1): 64-72.
  • 7Lindskog P, Ljung L. Tools for Semiphysical Modelling[J]. International Journal of Adaptive Control and Signal Processing, 1995, 9(6): 509-523.
  • 8Petersen J P. Mining of Ship Operation Data for Energy Conservation[D]. Denmark: Technical University of Denmark Informatics and Mathematical Modelling, 2011.
  • 9DTU Cognitive Systems Group. Propulsion Modeling [DB/OL]. http://cogsys.imm.dtu.dk/propulsionmodelling/ data. html, 2011.
  • 10王中兴,唐五龙,陈磊.基于质心和散度的模糊数排序方法[J].统计与决策,2008,24(5):40-42. 被引量:3

共引文献112

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部