期刊文献+

Elaborative collection of condensed combustion products of solid propellants:Towards a real Solid Rocket Motor(SRM)operational environment 被引量:1

原文传递
导出
摘要 A novel constant-pressure and constant-quenching distance Condensed Combustion Products(CCPs)collection system was developed,coupled with a timing control system,to collect the CCPs formed in the course of burning of aluminum-based composite propellants.The effects of adiabatic graphite plating,collection zone,quenching distance,time series of collection,and propellant burning rate on the microscopic morphology,particle size distribution and unburned aluminum content of CCPs were investigated.It was verified that the graphite plating can provide a high-fidelity high-temperature environment for propellant combustion.The combustion efficiency is improved by 2.44% compared to the bare propellant case.The time series of collection has a significant effect on the combustion efficiency of aluminum,and the combustion efficiency of aluminum in the thermal state(1.2-2.4 s)is 2.75% higher than that in the cold state(0-1.2 s).Similarly,the characteristics of the CCPs in different collection zones are different.At the quenching distance of 5 mm,the combustion efficiency of aluminum in the core zone(85.39%)is much lower than that in the outer zone(92.07%),while the particle size of the CCPs in the core zone(172μm)is larger than that in the outer zone(41μm).This indicates that the core zone is more likely to produce large-sized and incompletely burned agglomerates during the propellant combustion process.Different burning rates also lead to a significant difference in particle size distribution and combustion efficiency.High burning rates result in higher combustion efficiency.A detailed sequence of the elaborative collection process of CCPs is proposed,mainly including the setting of ignition delay time,burning rate,working pressure,plating length and time series of collection.The findings of this study are expected to provide a reliable tool for the evaluation of the combustion efficiency of solid propellants.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期77-88,共12页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.22375164,21975066 and U2241250) the Key Research and Development Program of Shaanxi,China(No.2023KJXX-005)。
  • 相关文献

参考文献7

二级参考文献33

共引文献39

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部