期刊文献+

Laser-assisted grinding of RB-SiC composites:Laser ablation behavior and mechanism

原文传递
导出
摘要 Laser ablation is an important process during Laser-Assisted Grinding(LAG)of hard and brittle materials.To realize controllable material removal during laser ablation of RB-SiC composites,ablation experiments under different Laser Energy Density(LAED)and LAG experiments are conducted.Evolution rules and mechanism of physical phase,ablation morphology and crack characteristics caused by laser irradiation are investigated.The forces of LAG and Conventional Grinding(CG)are compared.The results show that ablation surface changes from slight oxidation to obvious material removal with LAED increasing,and ablation depth increases gradually.The ablation products change from submicron SiO_(2)particles to nanoscale particles and floccule.High LAED promotes SiC decomposition and sublimation,which leads to the increase of C element.The SiC phase forms corrugated shape in recast layer and columnar shape in Heat Affected Zone(HAZ)at 56 J/mm^(2).The cold and heat cycle leads to formation of fishbone crack.For ablation specimen under 30 J/mm^(2),the grinding force can be reduced by a maximum of 39%and brittle damage region is reduced.The material removal and microcrack generated will significantly reduce the hardness and improve machinability,which can promote grinding efficiency.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期362-376,共15页 中国航空学报(英文版)
基金 funded by the Fundamental Research Funds for the Central Universities,China(Nos.DUT21GF403,DUT22YG210,DUT22LAB117) the High Level Talents Innovation Plan of Dalian,China(No.2020RD02) financial support from the Shenzhen Science and Technology Innovation Commission Project,China(No.JSGG20210420091802007)。
  • 相关文献

参考文献6

二级参考文献27

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部