摘要
针对具有周期边界条件的修正的晶体相场方程,本文构建一个线性、二阶、无条件能量稳定的时间半离散数值格式,通过引入拉格朗日乘子处理非线性项,使用Crank-Nicolson方法进行时间离散,依次证明该数值格式的唯一可解性、无条件能量稳定性及在时间上的二阶无条件收敛性,最后通过数值算例对该格式的有效性进行验证.
This paper constructs a linear,second-order,unconditionally energy stable,semi-discrete time stepping scheme for the modified phase field crystal equation with periodic boundary conditions.The unique solvability,unconditionally energy stability and unconditionally temporal convergence of order 2 of the numerical scheme are showed by introducing a Lagrange multiplier to deal with the nonlinear terms and adopting the second-order Crank-Nicolson method to discrete time.Numerical experiments are given in the last section to validate the efficiency of the proposed scheme.
作者
梁译泓
贾宏恩
Liang Yihong;Jia Hongen(School of Mathematics,Taiyuan University of Technology,Jinzhong 030600,China;Shanxi Key Laboratory for Intelligent Optimization Computing and Blockchain Technology,Jinzhong 030619,China)
出处
《数学理论与应用》
2023年第4期59-75,共17页
Mathematical Theory and Applications
基金
山西省归国留学基金项目(No.2021-029)
山西省科技合作交流专项项目(No.202104041101019)资助。
关键词
修正的晶体相场方程
线性格式
无条件能量稳定
误差估计
Modified phase field crystal equation
Linear scheme
Unconditionally energy stability
Error estimate