期刊文献+

基于图像滤波预处理的卷积神经网络汉字识别 被引量:1

Convolutional Neural Network Method for Recognizing Handwriting Chinese CharactersBased on Image Filter Preprocessing
下载PDF
导出
摘要 利用卷积神经网络可以对破损、模糊不清的文字进行有效识别。为了实现速度快、精度高等优点,通过卷积神经网络中的LeNet-5网络模型对手写汉字图像进行识别。首先,在模拟写字板中建立手写汉字的图像数据集,搭建并训练卷积神经网络模型保存图像特征;然后对输入的手写汉字图像进行模拟污染并采用7种滤波去噪方式;最后对加噪、滤波处理后的图像进行识别,对比不同滤波处理的准确性。实验结果可表明,该方法能高效、稳定地从有噪声图像中识别出文字,同时经高斯滤波与PCA滤波处理后的图像识别精确度更高。 Using convolutional neural networks to identify damaged and blurred characters is an obvious development trend of automatic and intelligent archaeological relics.In view of convolutional neural network′s advantages of fast recognition speed and high accuracy,this paper studied the utility of applying LeNet-5 network model of convolutional neural networks to recognition of handwritten Chinese character images.First an image dataset of handwritten Chinese characters is established in a simulated tablet,and a convolutional neural network model is built and trained to store image features.After simulating the contamination of input handwritten Chinese character images,seven filtering methods are used for denoising,and then the images treated with noise addition and filtering processing is recognized to compare accuracies of different filtering methods.Experimental results show that the proposed method can achieve efficient and stable recognition of characters,and the recognition accuracy after Gaussian filtering and PCA filtering is higher.
作者 张静娴 冷青轩 陈航 李素真 ZHANG Jingxian;LENG Qingxuan;CHEN Hang;LI Suzhen(School of Artificial Intelligence and Electrical Engineering,Guizhou Institute of Technology,Guiyang 550025,China)
出处 《电工技术》 2023年第24期69-73,共5页 Electric Engineering
关键词 卷积神经网络 图像污染 滤波去噪 图像识别 高斯滤波 convolutional neural network image contamination filter denoising image recognition Gaussian filtering
  • 相关文献

参考文献6

二级参考文献32

  • 1Chua L O, Yang L. Cellular Neural Networks:Theory. IEEE Trans on CAS, 1988,35( 10):1 257 - 1 272.
  • 2Chua L O, Yang L. Cellular Neural Networks:Applications. IEEE Trans on CAS, 1988,35( 10):1 273 - 1 290.
  • 3Zhao Jianye, Wang Haiming, Yu Daoheng. A New Approach for Edge Detection of Noisy Image Based on CNN. International Journal of Circuit:Theory and Applications,2003,31(2) : 119 - 131.
  • 4Wang Haiming,Zhao Jianye, Guo Shide, et al. A New Kind of Shadow Detector Based on CNN-UBN. IEEE first International Conference of Machine Learning and Cybernetics 2002(ICMLC'2002) ,4-5 November 2002, Beijing,69- 72.
  • 5Chua L O, Shi B. Exploiting Cellular Automata in the Design of Cellular Neural Networks for Binary Image Processing.ERL Technical Report No. M89/130, Berkeley : University of California, Nov. 15,1989.
  • 6Wolfram S. Theory and Applications of Cellular Automata. Singapore:World Scientific Company, 1986, 17 - 125.
  • 7Aizenberg N N, Aizenberg I N. CNN-like Networks Based on Multi-valued and Universal Binary Neurons:Learning and Application to Image Processing. Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications, 1994. CNNA-94,1994,153 - 158.
  • 8谢和平,分形应用中的数学基础与方法,1997年,81页
  • 9黄传军 汪海明 余道衡等.一种新的细胞神经网络算法在图像处理中的应用[A]..中国航空学会第五届信号与信息处理学术会议[C].成都,2001.171-174.
  • 10HUM. Visual pattern recognition by moment invariants[J]. Ire Trans Inf Theory, 1962(8): 179-187.

共引文献58

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部