期刊文献+

Fe/Co/Ni-N共掺杂石墨烯氧还原反应活性的DFT研究

DFT study on oxygen reduction reaction activity ofFe/Co/Ni-N doped graphene
下载PDF
导出
摘要 为了研究Fe/Co/Ni-N掺杂石墨烯的氧还原反应(ORR)活性,比较单金属原子和氮不同的掺杂方式对石墨烯ORR活性的影响.利用Materials Studio软件建立了Fe/Co/Ni-N掺杂石墨烯模型,然后将氧气分子分别吸附在Fe/Co/Ni-N掺杂石墨烯模型表面上.采用CASTEP模块对构建的模型进行结构优化并模拟计算,分析了Fe/Co/Ni-N掺杂石墨烯的吸附能、脱附能和导电性变化规律.基于模拟计算,发现单金属原子掺杂石墨烯时,Fe掺杂石墨烯的ORR活性优于Co和Ni;单金属原子和氮共掺杂石墨烯时,Fe-N掺杂石墨烯的ORR活性高于Co-N和Ni-N掺杂石墨烯,且M-N4-G形态的ORR活性优于M-N1-G、M-N2-G和M-N3-G. In order to study the oxygen reduction activity (ORR ) of Fe/Co/Ni-N doped graphenes, the influences of single metal atom and nitrogen co-doping on ORR activity of graphene were compared. The Fe/Co/Ni-N doped graphene models were established using Materials Studio, and then oxygen molecules were adsorbed respectively on the surfaces of Fe/Co/Ni-N doped graphene models. CASTEP module was used to optimize the structure of the model and simulation calculation. The adsorption energies, desorption energies and conductivities of Fe/Co/Ni-N doped graphenes were analyzed. Based on the simulation results, it is found that the ORR activity of Fe doped graphene is better than that of Co or Ni doped graphene when graphene is doped with single metal atom. As graphene is Co-doped with single metal atom and nitrogen, the ORR activity of Fe-N doped graphene is better than that of Co-N or Ni-N doped graphene, and the ORR activity of M-N 4 -G was better than those of M-N 1 -G M-N 2 -G and M-N 3 -G.
作者 马俊杰 宁锴 王婷 刘建峰 袁斌霞 潘卫国 施正荣 MA Jun-Jie;NING Kai;WANG Ting;LIU Jian-Feng;YUAN Bin-Xia;PAN Wei-Guo;SHI Zheng-Rong(College of Energy and Mechanical Engineering,Shanghai University of Electric Power,Shanghai 200090,China;Shanghai Non-carbon Energy Conversion and Utilization Institute,Shanghai 200240,China)
出处 《原子与分子物理学报》 北大核心 2024年第3期85-90,共6页 Journal of Atomic and Molecular Physics
基金 高端外国专家引进计划(G2022013028L)。
关键词 单金属原子 氮掺杂 石墨烯 氧还原反应 DFT模拟 Single metal atom Nitrogen doping Graphene Oxygen reduction reaction DFT
  • 相关文献

参考文献5

二级参考文献94

  • 1徐光宪.编著《物质结构》教材的一些体会[J].大学化学,1989,4(6):15-17. 被引量:14
  • 2Wu, G.; Zelenay, P. Accounts Chem. Res. 2013, 46, 1878. doi: 10.1021/ar400011z.
  • 3Zhang Z. H.; Liu, J.; Gu, J. J.; Su, L.; Cheng, L. F. Energy Environ. Sci. 2014, 7, 2535. doi: 10.1039/c3ee43886d.
  • 4Shao, Y. Y.; Sui J. H.; Yin, G. P.; Gao, Y. Z. Appl. Catal. B-Environ. 2008, 79, 89. doi:10.1016/j.apcatb.2007.09.047.
  • 5Huo, R. J.; Jiang, W. J.; Xu, S. L.; Zhang, F. Z.; Hu, J. S. Nanoscale 2014, 6, 203. doi: 10.1039/c3nr05352k.
  • 6Ferreira, P. J.; la O′, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. J. Electrochem. Soc. 2005, 152, A2256. doi: 10.1149/1.2050347.
  • 7Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j.
  • 8Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Adv. Mater. 2013, 25, 4932. doi: 10.1002/adma.201301870.
  • 9Zhang, L. P.; Niu, J. B.; Li, M. T.; Xia, Z. H. J. Phys. Chem. C 2014, 118, 3545. doi: 10.1021/jp410501u.
  • 10Zhu, C. Z.; Dong, S. J. Nanoscale 2013, 5, 1753. doi: 10.1039/c2nr33839d.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部