期刊文献+

一种车载LiDAR点云道路提取深度神经网络模型

A deep neural network model for road extraction of MLS LiDAR point cloud
下载PDF
导出
摘要 PointNet++在车载LiDAR点云道路提取中表现出优于传统方法的性能,但对于道路边缘的提取仍存在过分割或欠分割的现象。针对该问题,本文提出了一种改进的邻域增强编码网络——E-PointNet++,通过在特征提取前引入一个邻域增强编码模块,建立局部邻域内点与点之间的联系,以提高网络的道路边缘分割能力。在两个数据集上进行对比试验,E-PointNet++表现出明显优于其他方法的性能,准确性、完整性和检测质量均高于97%。该方法对于不同数据集和场景表现稳健。 PointNet++has shown better performance than traditional methods in MLS LiDAR point cloud road extraction,but there are still the phenomena of over segmentation or under segmentation for road edge extraction.To address this issue,an improved neighborhood enhancement coding network E-PointNet++is proposed.By introducing a neighborhood enhancement coding module before feature extraction,the connection between local neighborhood points is established to improve the network's road edge segmentation ability.Comparative experiments are conducted on two datasets,and E-PointNet++shows significantly better performance than other methods,with accuracy,integrity and detection quality all exceeding 97%.This method performs robustly on different datasets and scenarios.
作者 刘晋 杨容浩 文文 谭骏祥 兰青龙 高祥 汤洪 LIU Jin;YANG Ronghao;WEN Wen;TAN Junxiang;LAN Qinglong;GAO Xiang;TANG Hong(Department of Surveying&Mapping,College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China;Chengdu Branch of South Surveying&Mapping Technology Co.,Ltd.,Chengdu 610031,China)
出处 《测绘通报》 CSCD 北大核心 2023年第12期8-12,18,共6页 Bulletin of Surveying and Mapping
基金 四川省科技计划(2021YJ0369)。
关键词 车载LiDAR点云 深度学习 道路提取 边缘分割 邻域增强编码 MLS LiDAR point cloud deep learning road extraction edge segmentation neighborhood enhanced coding
  • 相关文献

参考文献9

二级参考文献79

  • 1杜豫川,刘成龙,吴荻非,赵聪.新一代智慧高速公路系统架构设计[J].中国公路学报,2022,35(4):203-214. 被引量:47
  • 2刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版),2005,30(3):189-193. 被引量:65
  • 3史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:90
  • 4ZHOU J, CHENG L,BISCHOF W F. Online Learning with Novelty Detection in Human-guided Road Tracking [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007,45 : 3967-3977.
  • 5BRAZOHAR M,COOPER D B. Automatic Finding of Main Road in Aerial Image by Using Geometric-Stochastic Models and Estimation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18 ; 707-721.
  • 6ZHANG C, BALTSAVIAS E, GRUEN A. Knowledge-Based Image Analysis for 3D Road Construction [J]. Asian Journal of Geoinforma tics, 2001,1 ( 4 ) : 3-14.
  • 7BARSI A, HEIPEK C. Artificial Neural Networks for the Detection of Road Junctions in Aerial Images [J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2003, 34 : 17-19.
  • 8CLODE S, ROTTENSTEINER F, KOOTSOOKOS P, et al. Detection and Vectorization of Roads from LiDAR Data [J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(5) : 517-536.
  • 9ZHAO H, SHIBASAKI R. Reconstructing Textured CAD Model of Urban Environment Using Vehicle borne Laser Range Scanners and Line Cameras [C]// Lecture Notes In Computer Science International Workshop on Computer Vision Systems Proceeding. New York: Springer Berlin Heidelberg , 2001: 284-297.
  • 10MANANDHAR D, SHIBASAKI R, Auto-extraction of Urban Features from Vehicle-borne Laser Data [C]// International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Ottawa s. n. J, 2002.

共引文献172

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部