摘要
与传统模型相比,人工神经网络在含蜡原油黏度预测中具有更高的准确性及泛化能力。从原油组分、黏度等多个角度进行分析,结合温度、黏度等因素的影响,建立基于人工神经网络的含蜡原油黏度预测模型,对神经网络结构和参数进行优化,进一步提高模型性能,从人工神经网络预测纳米润滑油黏度与原油黏度预测两方面讨论了其在含蜡原油黏度预测中的应用,以期提供理论参考。
Compared with the traditional model,the artificial neural network has higher accuracy and generalization ability in the viscosity prediction of waxy crude oil.Based on the influence of temperature,and viscosity,etc.,the study establishes the viscosity prediction model of waxy crude oil based on artificial neural network,optimizes the structure and parameters of the neural network,further improves the performance of the model,and discusses the application of artificial neural network in predicting the viscosity of nano-lubricating oil and crude oil.
作者
王文红
Wang Wenhong(Changchun Oil and Gas Branch,National Pipeline Group North Pipeline Co.,LTD.,Changchun 130000,China)
出处
《黑龙江科学》
2024年第2期73-75,共3页
Heilongjiang Science
关键词
人工精神网络
含蜡原油
黏度预测
Artificial neural network
Wax-bearing crude
Viscosity prediction