期刊文献+

卷积神经网络在图像目标检测中的应用

The Application of Convolutional Neural Networks in Image Object Detection
下载PDF
导出
摘要 分析卷积神经网络(Convolutional Neural Networks,CNN)在图像目标检测中的性能,重点比较AlexNet、GoogleNet和ResNet50这3个流行模型在不同数据集上的表现。在CIFAR-100和CIFAR-10数据集上,GoogleNet和ResNet50表现出更精确的物体识别能力,而AlexNet相对稍弱。这些结果有助于深入了解CNN在图像识别任务中的性能和适用性。 This article analyzes the performance of Convolutional Neural Networks(CNN)in image object detection,with a focus on comparing the performance of three popular models,AlexNet,GoogleNet,and ResNet50,on different datasets.On the CIFAR-100 and CIFAR-10 datasets,GoogleNet and ResNet50 exhibit more accurate object recognition capabilities,while AlexNet is relatively weaker.These results help to provide insight into the performance and applicability of CNN in image recognition tasks.
作者 程卓 CHENG Zhuo(Guiyang Vocational and Technical College,Guiyang 550081,China)
出处 《电视技术》 2023年第11期209-211,215,共4页 Video Engineering
关键词 图像目标检测 卷积神经网络(CNN) GoogleNet ResNet50 image object detection Convolutional Neural Networks(CNN) GoogleNet ResNet50
  • 相关文献

参考文献6

二级参考文献44

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部