期刊文献+

雾天环境下前车车距测量方法研究

Study on the distance measurement of approaching vehicles in fog
下载PDF
导出
摘要 为解决雾天环境下道路上车辆与前车车距测量问题,构造车载雾天图像快速处理以及前车车距测量实验平台。以暗通道算法为基础,基于能见度图像分割算法估算大气光值,利用双边滤波细化折射率图,在分割区域上进行不同程度去雾,有效解决暗通道算法应用在道路图像上产生的色彩失真、对比度过低等问题。利用边缘检测算法、霍夫变换算法完成对车辆边框的检测,搭建测距模型测量出前方车辆的距离。结果表明,构造的平台能够在能见度小于100 m的浓雾环境下测量出前方车辆车距,并能及时告警。 To address the challenges related to distance measurement of an approaching vehicle in fog,we developed an experimental platform to rapid image processing and real-time distance measurement.Firstly,we down-sampled the images through the dark channel algorithm to estimate atmospheric light values.Then,we introduced a tolerance mechanism to deal with the bright regions that do not satisfy the dark channel prior.This tolerance mechanism corrected the estimate with incorrect refractive index of such regions and effectively mitigated the issues of color distortion and low contrast.Secondly,we detected the vertical edges of an approaching vehicle using the edge detection and the improved Hough transform algorithms.Finally,we measured the safe distance from the approaching vehicle using the model.The results shows that the platform developed in this study can effectively measure the distance of the approaching vehiclein fog with a visibility<100 m,and can alert drivers in a timely and effective manner.
作者 盛雨婷 SHENG Yuting(Intelligent Manufacturing Institute of Hefei University of Technology,Hefei 230041,China)
出处 《山东科学》 CAS 2024年第1期88-94,共7页 Shandong Science
关键词 图像去雾 能见度分割 暗通道算法 双边滤波 边缘检测算法 车距测量 haze removal image down-sampling dark channel algorithm bilateral filtering edge detection algorithm vehicle distance measurement
  • 相关文献

参考文献7

二级参考文献65

  • 1张洪斌,黄山.面向城市路口的高清晰智能监控系统研究[J].四川大学学报(工程科学版),2012,44(S1):224-228. 被引量:7
  • 2Tan R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorgae, USA: IEEE, 2008. 1-8.
  • 3Tarel J P, Hautiére N. Fast visibility restoration from a single color or gray level image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2201-2208.
  • 4He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1956-1963.
  • 5Zhou W, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 6Carnec M, Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference. Image Communication, 2008, 23(4): 239-256.
  • 7Sheikh H R, Bovik A C, Cormack L. No-reference quality assessment using natural scene statistics: JPEG 2000. IEEE Transactions on Image Processing, 2005, 14(11): 1918-1927.
  • 8Hautiére N, Tarel J P, Aubert D, Dumont E. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereology Journal, 2008, 27(2): 87-95.
  • 9姚波, 黄磊, 刘昌平. 去雾增强图像质量客观比较方法的研究. 中国模式识别会议论文集, 南京, 中国: IEEE, 2009. 1-5.
  • 10Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 2002 IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 2002. 820-827.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部