期刊文献+

T型受限微通道内液滴生成特性数值模拟

Numerical simulation of droplet generation characteristics in T-confined microchannel
下载PDF
导出
摘要 为给控制液滴均匀高频的生成提供参考,针对受限微通道内液滴的生成,考虑流体物性和流动条件的影响,进行了T型受限微通道内液滴生成特性的数值模拟研究。利用COMSOL软件建立了液滴生成过程仿真模型,采用相场法探究了毛细数、两相流量比、黏度比以及壁面润湿性对液滴生成的影响。研究结果表明:当连续相黏度为0.01 Pa·s,分散相速度和黏度分别为0.005 m/s和0.001 Pa·s,连续相毛细数从0.001 5增大到0.007 5时,无量纲液滴长度从2.8幂指数减小到1.5,无量纲液柱长度从2.6线性增大到7.6,液滴生成频率从每秒30个幂指数增大到52个;当连续相黏度为0.01 Pa·s,分散相黏度为0.001 Pa·s,流量比从0.1增大到0.9时,无量纲液滴长度从1.05线性增大到2.55,无量纲液柱长度从6.49幂指数减小到2.51,液滴生成频率从每秒170个幂指数减小到65个;当连续相速度为0.01 m/s,分散相速度为0.005 m/s,黏度比从0.025增大到0.5时,无量纲液滴长度从1.72函数式增大到2.1,无量纲液柱长度从3.11函数式增大到3.9,液滴生成频率从每秒31个函数式减小到24个;壁面润湿性会影响液滴的形态,但并无明显的函数关系;流体物性和流动条件对液滴的生成具有显著影响。 To provide reference for controlling the generation of uniform high frequency of drop-lets,aimed at droplet generation in confined microchannels,considering the influence of fluid physical properties and flow conditions,numerical simulation of droplet formation in a T-confined microchannel was carried out.Using COMSOL software,droplet generation process simulation model was established,and the phase field method was adopted to explore the capillary number,two-phase flow ratio,viscosity ratio and wall wettability effects on droplet generation.Results showed that when the continuous phase viscosity is 0.01 Pa·s,and the dispersed phase velocity and viscosity are 0.005 m/s and 0.001 Pa·s,respectively,as the continuous phase capillary number increases from 0.0015 to 0.0075,the continuous phase capillary number increased from 0.0015 to 0.0075,the dimensionless droplet length decreased from 2.8 power index to 1.5,the dimensionless liquid column length increased linearly from 2.6 to 7.6,the droplet generation fre-quency increased from 30 power exponents per second to 52;when the continuous phase viscosity is 0.01 Pa·s,the dispersed phase viscosity is 0.001 Pa·s,and the flow ratio increased from 0.1 to 0.9,the dimensionless droplet length increased linearly from 1.05 to 2.55,the dimension-less liquid column length decreased from 6.49 power index to 2.51,the droplet generation fre-quency decreased from 170 power index per second to 65,when the continuous phase velocity is 0.01 m/s,the dispersed phase velocity is 0.005 m/s,and the viscosity ratio increased from 0.025 to 0.5,and the dimensionless droplet length increased from 1.72 to 2.1 The length of the dimen-sionless liquid column increased from 3.11 to 3.9,and the droplet generation frequency decreased from 31 functions per second to 24.Wall wettability affects the morphology of droplets,but there is no obvious functional relationship.The physical properties and flow conditions of fluid have significant influence on droplet formation.
作者 袁越锦 曹晓鸽 赵于 何永清 徐英英 YUAN Yuejin;CAO Xiaoge;ZHAO Yu;HE Yongqing;XU Yingying(College of Mechanical and Electrical Engineering,Shaanxi University of Science&Technology,Xi’an 710021,China;Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Sensing,Chongqing Technology and Business University,Chongqing 400067,China)
出处 《西安工程大学学报》 CAS 2023年第6期129-136,共8页 Journal of Xi’an Polytechnic University
基金 国家自然科学基金项目(51876109) 陕西省国际科技合作计划重点项目(2020KWZ-015) 陕西省教育厅青年创新团队科研计划项目(22JP012)。
关键词 微流体学 两相流 相场法 液滴 数值模拟 microfluidics two-phase flow phase field method droplet numerical simulation
  • 相关文献

参考文献7

二级参考文献104

  • 1乐军,陈光文,袁权,罗灵爱,LE GALL Hervé.微通道内气-液传质研究[J].化工学报,2006,57(6):1296-1303. 被引量:23
  • 2Tabeling T. A brief introduction to slippage, droplets and mixing in microfluidic systems [J]. Lab. on a Chip., 2009, 9: 2428-2436.
  • 3Hessel V, Lowe H, Schonfeld F. Micromixers--A review on passive and active mixing principles [J]. Chemical Engineering Science, 2005, 60 (8-9): 2479-2501.
  • 4Charpentier J C. Process intensification by miniaturization [J]. ChemicalEngineering&Technology, 2005, 28 (3): 255-258.
  • 5Utada A S, Lorenceau E, Link D R, et al. Monodisperse double emulsions generated from a microcapillary device [J]. Science, 2005, 308 (5721): 537-541.
  • 6Christopher G F, Anna S L. Microfluidic methods for generating confinuoasdropletstreams[J].JournalofPhysicsD: AppliedPhysics, 2007, 40: R319-R336.
  • 7Tonkovich A Y, Perry S, Wang Y, et al. Microchannel process technology for compact methane steam reforming [J]. Chemical Engineering Seience, 2004, 59 (22-23):4819-4824.
  • 8Song H, Chen D L, Ismagilov R E Reactions in droplets in mJcroflulidicchannels[J].AngewandteChemie: lnternationalEdition, 2006, 45 (44): 7336-7356.
  • 9Tonkovich A, Kuhlmann D, Rogers A, et al. Microchannel technology scale-up to commercial capacity [J]. Chemical Engineering Research &Design, 2005, 83 (A6): 634-639.
  • 10Zhang H, Chen G, Yue J, et al. Hydrodynamics and mass transfer of gas-liquid flow in a falling film microreactor [J]. AIChE J., 2009, 55(5): 1110-1120.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部