摘要
对于后代分布为{pi,i≥0}的上临界带移民分支过程{Zn},如果分支和移民分布满足适当的矩条件,则Zn/m^(n)几乎处处收敛到某个非退化的极限,其中m:=∑_(i=0)^(∞)ipi为过程后代分布的均值.本文给出了p0>0时该过程下偏差概率P(Zn=k)的渐近行为,其中k∈[k_(n),m^(n)],k_(n)→∞(n→∞),这一结果可作为文献[8]中Schroder情形结论的补充.
For a supercritical branching processes with immigration {Zn} with offspring distribution {pi,i≥0},it is known that under suitable conditions on the offspring and immigration distributions,Zn=mn converges almost surely to a finite and strictly positive limit,where m is the offspring mean.In certain situation p_(0)>0,we study the limiting properties of the probabilities P(Zn=k)with k∈[k_(n),m^(n)],k_(n)→∞(n→∞).Detailed asymptotic behavior of such lower deviation probabilities is given as a complement to our previous work[8].
作者
孙琪
张梅
SUN Qi;ZHANG Mei(School of Mathematics and Statistics,Beijing Technology and Business University,Beijing,100048,China;School of Mathematical Sciences,Laboratory of Mathematics and Complex Systems,Beijing Normal University,Beijing,100875,China)
出处
《应用概率统计》
CSCD
北大核心
2023年第6期879-896,共18页
Chinese Journal of Applied Probability and Statistics
基金
国家自然科学基金项目(批准号:11871103、12271043)
国家重点研发计划项目(批准号:2020YFA0712-900)
北京工商大学学科建设经费(批准号:STKY202305)资助.
关键词
上临界
分支过程
下偏差
移民
supercritical
branching processes
lower deviations
immigration