期刊文献+

高校学生全画像学业成绩预警模型分析

Analysis of a full picture academic performance warning model for college students
下载PDF
导出
摘要 基于CatBoost算法,利用高校学生的全面画像数据,建立了学业成绩预警模型,可有效预防学生学业成绩的严重下滑。文章以江苏连云港一所高校的学生学业成绩数据为对象,采用机器学习算法CatBoost,并以学生的历史学业成绩数据为基础进行学业成绩的预测,其准确率达到了79.6%。 Based on the CatBoost algorithm and utilizing comprehensive profile data of college students,a performance warning model was established,which can effectively prevent a serious decline in student academic performance.The article takes the academic performance data of students from a university in Lianyungang,Jiangsu as the object,uses the machine learning algorithm CatBoost,and predicts academic performance based on historical academic performance data of students,with an accuracy rate of 79.6%.
作者 郭召 张子涵 刘艺 GUO Zhao;ZHANG Zihan;LIU Yi(Basic Teaching Department,Zhengzhou Urban Construction Vocational College,Zhengzhou 45ooo0,China)
出处 《计算机应用文摘》 2024年第3期16-19,28,共5页 Chinese Journal of Computer Application
关键词 数据挖掘 CatBoost算法 回归模型 学生全画像学业成绩预警 data mining CatBoost algorithm regression model student portrait academic performance warning
  • 相关文献

参考文献5

二级参考文献57

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部