摘要
近几年,随着我国经济的迅速发展,海上贸易日益频繁。为有效地提高海上救援的效率,将情景规划和随机规划应用到海上救援基地选址及救助船配置优化问题当中,考虑多种救助船型,并具体考虑每种船型可航行的区域,假定3种恶劣天气的情景,建立两阶段随机规划模型,设计免疫粒子群算法(Particle Swarm Optimization,PSO),并以我国南海海域为例,进行算例验证。结果表明:所建模型可找到最优的选址方案,大大降低了海上救援的成本,证明模型以及算法的有效性和合理性。对模型优化结果进行灵敏度分析,为我国交通运输部南海救助局救助船队的更新方向提供了参考。
Scenario planning and stochastic programming is introduced into the location selection of maritime rescue base and the optimization of rescue ship configuration.Several types of rescue ships and their respective seaworthy areas are investigated.Three severe weather scenarios are assumed.A two-stage stochastic programming model is built and the immune PSO(Particle Swarm Optimization)algorithm is developed.The method is verified with South China Sea case.The sensitivity analysis for the results is carried out.The result shows that the method can provide optimum proposals in saving rescue costs.
作者
张伟航
钟铭
朱彦锦
张志华
郑俊
ZHANG Weihang;ZHONG Ming;ZHU Yanjin;ZHANG Zhihua;ZHENG Jun(College of Transportation Engineering,Dalian Maritime University,Dalian 116026,China;Liaoning Provincial Transportation Service Center,Shenyang 110000,China)
出处
《中国航海》
CSCD
北大核心
2023年第4期61-68,共8页
Navigation of China
基金
国家社会科学基金项目(22BGJ034)。
关键词
救援基地选址
救助船
免疫粒子群算法
随机规划
location selection for rescue base
rescue ship
immune particle swarm optimization
stochastic programming