摘要
医院网络安全动态控制技术对于保障医院网络的安全性和稳定性具有重要意义;传统的网络异常监测和网络安全动态控制无法解决大面积网络入侵的问题;为了解决这些问题,研究构建了基于SOINN结合ADNDD的医院安全动态控制模型;研究对算法进行优化,将SOINN与ADNDD进行融合构建网络安全动态控制模型,再利用数据集去验证模型的性能;结果表明,在数据集中训练后,模型在对浪涌攻击、偏差攻击和几何攻击数据集中的离群点识别率分别为92.13%、90.04%和89.07%;这说明模式算法经过数据集的应用能够在医院网络异常检测和动态防御控制中满足网络安全的要求;旨为提高医院网络的安全性和稳定性。
It is of great significance for hospital network security dynamic control technology to ensure the security and stability of hospital networks.The anomaly monitoring and security dynamic control of traditional networks cannot solve the problem of large area network intrusion.To solve these problems,a hospital security dynamic control model based on self-organizing incremental neural network(SOINN)combined with advanced digital network data design(ADNDD) is constructed.The algorithm is optimized to fuse the SOINN with the ADNDD to construct the network security dynamic control model,and then the dataset is used to verify the performance of the model.The results show that after training in the dataset,the model identifies 92.13%,90.04% and 89.07%of outliers in the datasets of surge attack,deviation attack and geometric attack,respectively.This indicates that the model algorithm can meet the requirements of network security in hospital network anomaly detection and dynamic defense control after the application of the dataset.The aim is to improve the security and stability of hospital network.
作者
温浩杰
解韵坤
苏彬
WEN Haojie;XIE Yunkun;SU Bin(Eastern Theater Command General Hospital,Nanjing 210002,China)
出处
《计算机测量与控制》
2024年第1期99-104,113,共7页
Computer Measurement &Control
基金
东部战区总医院院管项目(YYQN2021081)。
关键词
网络异常监测
医院
网络安全
动态控制
network anomaly monitoring
hospital
network security
dynamic control