摘要
为提升人机交互医疗设备对久坐不动、常年卧床等状态下人体的监测效果,在利用无线体域网建立人体姿态识别系统的基础上,设计了相应的改进人工神经网络与无线体域网系统进行融合,并将其应用于人机交互医疗设备中;结果表明,在HiEve数据集中,该方法于20次迭代时开始收敛,损失函数值为0.0112;在患者不同姿势的识别验证中,该方法下的人机交互医疗设备识别准确率均显著高于90%,并且耗时最短仅为23.16 s,具有较高的识别准确率和效率,为人体姿态识别及相关医疗设备的应用提供了更为可靠的技术参考。
In order to improve the monitoring effect of human-computer interactive medical equipment on human body under the conditions of being sedentary and bedridden all the year round,wireless body area network(WBAN)is used to establish a human body posture recognition system,based on this,an improved artificial neural network is designed to fuse with the WBAN system,which is applied to the human-computer interactive medical equipment.The results show that in the HiEve dataset,the method starts to converge at 20 iterations,and the Loss function value is 0.0112.In recognition verification on the different postures of patients,the human-machine interaction medical device recognition accuracy of this method is significantly higher than 90%,and the shortest time is only 23.16 s.It has high recognition accuracy and efficiency,providing a more reliable technical reference for the human posture recognition and related medical device applications.
作者
代维利
DAI Weili(Navy Qingdao Special Service Convalescent Center,Qingdao 266071,China)
出处
《计算机测量与控制》
2024年第1期245-250,共6页
Computer Measurement &Control
关键词
改进人工神经网络
CNN
无线体域网
人体姿态识别
人机交互
医疗设备
Improving artificial neural networks
CNN
wireless body area network
human pose recognition
human-computer interaction
medical equipment