期刊文献+

Relation Between the Eventual Continuity and the E-property for Markov-Feller Semigroups

原文传递
导出
摘要 We investigate some relations between two kinds of semigroup regularities, namely the e-property and the eventual continuity, both of which contribute to the ergodicity for Markov processes on Polish spaces.More precisely, we prove that for Markov-Feller semigroup in discrete time and stochastically continuous MarkovFeller semigroup in continuous time, if there exists an ergodic measure whose support has a nonempty interior,then the e-property is satisfied on the interior of the support. In particular, it implies that, restricted on the support of each ergodic measure, the e-property and the eventual continuity are equivalent for the discrete-time and the stochastically continuous continuous-time Markov-Feller semigroups.
机构地区 LMAM
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第1期1-16,共16页 应用数学学报(英文版)
基金 supported by National Natural Science Foundation of China (No.11731009, No.12231002) Center for Statistical Science,Peking University。
  • 相关文献

参考文献1

二级参考文献16

  • 1Billingsley P. Convergence of Probability Measures, 2nd ed. New York: John Wiley & Sons, 1999.
  • 2Bouleau N. Une structure uniforme sur un espace F(E; F). Cah Topoi G6om Diff6r Cat6g, 1969, 11:20-214.
  • 3Bouleau N. On the coarsest topology preserving continuity. ArXiv:0610373, 2006.
  • 4Chen M F. From Markov Chains to Non-Equilibrium Particle Systems, 2nd ed. River Edge: World Scientific, 2004.
  • 5Cotar C, Deuschel J D. Decay of covariances, uniqueness of ergodic component and scaling limit for a class of E79 systems with non-convex potential. Ann Inst H Poincar6 Probab Statist, 2012, 48:819-853.
  • 6Cotar C, Deuschel J D, Mfdler S. Strict convexity of the free energy for a class of non-convex gradient models. Comrn Math Phys, 2009, 286:359-376.
  • 7E W N, Mattingly J C. Ergodicity for the Navier-Stokes equation with degenerate random forcing: Finite-dimensional approximation. Comm Pure Appl Math, 2001, 54:1386 1402.
  • 8Funaki T, Spohn H. Motion by mean curvature from the Ginzburg-Landau interface model. Comm Math Phys, 1997, 185:1-36.
  • 9Hairer M, Mattingly J C. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann of Math, 2006, 164:993-1032.
  • 10Hairer M, Mattingly J C. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electron J Probab, 2011, 16:658 738.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部