摘要
飞行自组织网络(FANET)是一种稳健而灵活的无线通信方式,涉及信号覆盖范围、吞吐量和电池消耗等关键因素。然而,优化这些参数仍然面临着实际挑战。本文使用递归神经网络(RNN)对影响因素进行建模,并引入自适应预测控制(APC)方法构建控制系统,深入研究机载Wi-Fi网络和FANET实验系统的综合性能。通过智能的Ad Hoc网络和AP控制方法,研究团队成功优化了无人机的通信系统容量和覆盖问题,为飞机控制带来了显著优势。
Flying Ad Hoc Network(FANET)is a robust and flexible wireless communication method that involves key factors such as signal coverage,throughput,and battery consumption.However,there are still practical challenges to optimizing these parameters.In this paper,recurrent neural network(RNN)is used to model the influencing factors,and the adaptive predictive control(APC)method is introduced to construct the control system,and the comprehensive performance of the airborne Wi-Fi network and the FANET experimental system is deeply studied.Through the intelligent Ad Hoc network and AP control method,the research team successfully optimizes the communication system capacity and coverage of the UAV,which has significant advantages to the aircraft control.
作者
岳平
王治国
Yue Ping;Wang Zhi-guo(Guangdong Vocational Institute of Sport,Guangzhou 510650,Guangdong Province,China;Guangdong Institute of Science and Technology,Guangzhou 510640,Guangdong Province,China)
出处
《科学与信息化》
2024年第2期67-69,共3页
Technology and Information
基金
中国高校产学研创新基金-无人集群协同智能项目,项目名称:面向多行业的无人机检修与装配技术应用,项目编号2021ZYA10002
广东省继续教育质量提升工程,项目名称:广东科学技术职业学院无人机社区教育示范基地,项目编号:JXJYGC2022GX320。