期刊文献+

一元及多元信号分解发展历程与展望

Univariate and Multivariate Signal Decomposition:Review and Future Directions
下载PDF
导出
摘要 现实世界中,所获得的信号大部分都是非平稳和非线性的,将此类复杂信号分解为多个简单的子信号是重要的信号处理方法.1998年,提出希尔伯特–黄变换(Hilbert-Huang transform,HHT)以来,历经20余年的发展,信号分解已经成为信号处理领域相对独立又具有创新性的重要内容.特别是近10年,多元/多变量/多通道信号分解理论方法方兴未艾,在诸多领域得到了成功应用,但目前尚未见到相关综述报道.为填补这个空缺,从单变量和多变量两个方面系统综述了国内/外学者对主要信号分解方法的研究现状,对这些方法的时频表达性能进行分析和比较,指出这些分解方法的优势和存在的问题.最后,对信号分解研究进行总结和展望. Most signals obtained in the real world are non-stationary and nonlinear,decomposing such complex sig-nals into several simple sub-signals is an important signal processing method.Since the Hilbert-Huang transform(HHT)was proposed in 1998,after more than 20 years of development,signal decomposition has become a relat-ively independent and innovative important content in the field of signal processing.Especially in the past decade,multivariate signal decomposition methods and theoretical research are in the ascendant,which have been success-fully applied in many fields.However,there is no relevant overview report at present.Therefore,this paper system-atically summarizes the development of signal decomposition theory and methods from both univariate and mul-tivariate aspects.This work analyzes and compares the time-frequency expression performance of these methods,and points out the advantages and issues.Finally,the future research of signal decomposition is prospected and summarized.
作者 陈启明 文青松 郎恂 谢磊 苏宏业 CHEN Qi-Ming;WEN Qing-Song;LANG Xun;XIE Lei;SU Hong-Ye(State Key Laboratory of Industrial Control Technology,Zhejiang University,Hangzhou 311100,China;Damo Academy,Alibaba Group,Hangzhou 310027,China;Damo Academy,Alibaba Group,Seattle 98060,USA;School of Information,Yunnan University,Kunming 650091,China)
出处 《自动化学报》 EI CAS CSCD 北大核心 2024年第1期1-20,共20页 Acta Automatica Sinica
基金 国家自然科学基金(62003298,62073286) 云南省基础研究计划(202201AT070577)资助。
关键词 信号分解 时频分析 希尔伯特–黄变换 多元信号分解 Signal decomposition time-frequency analysis Hilbert-Huang transform(HHT) multivariate signal de-composition
  • 相关文献

参考文献6

二级参考文献83

  • 1杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:144
  • 2程军圣,于德介,杨宇.基于内禀模态奇异值分解和支持向量机的故障诊断方法[J].自动化学报,2006,32(3):475-480. 被引量:35
  • 3朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展[J].计算机工程与应用,2007,43(5):24-27. 被引量:57
  • 4殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58. 被引量:40
  • 5Bach F R, Jenatton R, Mairal J, et al. Optimization with sparsity-inducing penalties. Found Trends Mach Learn, 2012, 4:1 106.
  • 6Boashash B. Time-Prequency Signal Analysis: Methods and Applications. Melbourne/New York: Longman-Cheshire/ John Wiley, 1992.
  • 7Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev, 2009, 51:34-81.
  • 8Cands E, Romberg J, Tao T. Robust uncertainty principles: Exact signal recovery from highly incomplete frequency information. IEEE Trans Inform Theory, 2006, 52:489-509.
  • 9Cands E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006, 59:1207 1223.
  • 10Cands E, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51:4203-4215.

共引文献320

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部