期刊文献+

基于拉曼光谱和深度学习的家蚕卵微粒子病无损检测

Non-Destructive Detection of Silkworm Pebrine Disease at Egg Stage Based on Raman Spectroscopy and Deep Learning
下载PDF
导出
摘要 为研究家蚕微粒子病检测方法,基于密集连接块提出用R-DenseNet模型对家蚕微粒子病拉曼光谱进行无损检测。以患家蚕微粒子病原原母种卵为实验样本,构建家蚕微粒子病拉曼光谱数据集。R-DenseNet与其他5种分类模型的对比结果表明,不使用额外预处理的R-DenseNet的检测准确率达到97.32%,优于使用预处理的传统分类模型;对于处理60 dB强度噪声的光谱数据,R-DenseNet能达到93.66%的检测精度,在同等性能中,其模型训练的参数量较对比模型减少50%以上,表现出更好的鲁棒性和计算效率。文中提出的R-DenseNet网络结构能够对家蚕卵微粒子病拉曼光谱实现快速、准确且无损的检测,为家蚕微粒子病检测提供了一种新途径。 In order to study the detection method of silkworm pebrine disease, we proposed R-DenseNet based on dense connected blocks for non-destructive detection of silkworm pebrine disease in Raman spectra. R-DenseNet was compared with five other classification models, and the results showed that the detection accuracy of R-DenseNet without additional preprocessing reached 97.32%, which was better than the traditional classification models with preprocessing. R-DenseNet achieve 93.66% for spectral data processing 60 dB intensity noise, and its model training parametric number reduced by more than 50% compared with the comparison model in the same performance, showing better robustness and computational efficiency. The proposed R-DenseNet network structure can achieve fast, accurate and non-destructive detection of silkworm egg pebrine disease Raman spectra, providing a new way for silkworm pebrine disease detection.
作者 代芬 邢鸿昕 王先燕 冯敏 胡豆豆 孙京臣 赵懿琨 王叶元 Dai Fen;Xing Hongxin;Wang Xianyan;Feng Min;Hu Doudou;Sun Jingchen;Zhao Yikun;Wang Yeyuan(College of Electronic Engineering(College of Artificial Intelligence),South China Agricultural University,Guangzhou 510642,China;College of Animal Science,South China Agricultural University,Guangzhou 510642,China;Guangdong Sericultural Technology Promotion Center,Guangzhou 510640,China)
出处 《蚕业科学》 CAS CSCD 北大核心 2023年第6期560-567,共8页 ACTA SERICOLOGICA SINICA
基金 国家自然科学基金项目(61675003) 广东省自然科学基金项目(2018A030310153) 广州市科技计划资助项目(201707010346) 广东省蚕桑产业技术体系项目(2023KJ124)。
关键词 拉曼光谱 家蚕微粒子病 无损检测 深度学习 Raman spectroscopy Silkworm pebrine disease Non-destructive detection Deep learning
  • 相关文献

参考文献9

二级参考文献163

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部