摘要
现有的动车组不落轮镟牵引对位作业模式中存在对位效率低、作业环境恶劣、智能化程度低等多个弊端。结合不落轮镟的现场作业条件,通过对公铁两用车、镟轮工位及动车组运行线路的周边加装智能设备,采用视觉深度学习和图像配准技术,构建一套不落轮镟作业智能牵引对位系统,实现镟轮修库单人操作自动定位,改变了传统的多名作业人员协同配合的作业模式,在提高动车组整体镟修作业效率,改善作业环境的同时,建立一种新型的作业模式,有效的提升了作业劳效。
The existing operating mode of unfalling wheel lathe traction alignment of EMU has many disadvantages such as low alignment efficiency,bad working environment and low intelligence degree.Combined with the on-site operation conditions of non-falling wheel lathe,by installing intelligent devices around the road and railway dual-purpose vehicle,wheel lathing station and EMU running line,using visual deep learning and image registration technology,a set of intelligent traction alignment system for non-falling wheel lathe operation is constructed to realize automatic positioning of wheel lathing repair depot by one person.This new operation mode changes the traditional multi-person operation mode.The whole operation efficiency of lathing repair of EMU is improved and the working environment is improved.
作者
杜新伟
石晓飞
肖亚运
杨大顺
DU Xinwei;SHI Xiaofei;XIAO Yayun;YANG Dashun(Guangzhou Railway(Group)Company,Guangzhou Multiple Depot,Guangzhou Guangdong 511483,China)
出处
《铁道运营技术》
2024年第1期12-15,共4页
Railway Operation Technology
基金
中国铁路广州局集团有限公司科研计划项目(2020DZ06-J):动车组不落轮镟作业作业智能牵引对位研究。
关键词
动车组
镟轮
智能
自动
对位
EMU
wheelset lathing
intelligence
automatic
alignment