摘要
在毫米波合成孔径雷达(SAR)安检成像违禁品的检测与识别中,存在着目标尺寸过小、目标被部分遮挡和多目标之间重叠等复杂情况,不利于违禁品的准确识别。针对这些问题,提出了一种基于双分支多尺度融合网络(DBMFnet)的违禁品检测方法。该网络使用Encoder-Decoder的结构,在Encoder阶段,提出一种双分支并行特征提取网络(DBPFEN)来增强特征提取;在Decoder阶段,提出一种多尺度融合模块(MSFM)来提高对目标的检测能力。实验结果表明,该方法的均交并比(mIoU)均优于现有的语义分割方法,降低了漏检与错检率。
There are several major challenges in the detection and identification of contraband in millimetre-wave synthetic aperture radar(SAR)security imaging:the complexities of small target sizes,partially occluded targets and overlap between multiple targets,which are not conducive to the accurate identification of contraband.To address these problems,a contraband detection method based on dual branch multiscale fusion network(DBMFnet)is proposed.The overall architecture of the DBMFnet follows the encoder-decoder framework.In the encoder stage,a dual-branch parallel feature extraction network(DBPFEN)is proposed to enhance the feature extraction.In the decoder stage,a multi-scale fusion module(MSFM)is proposed to enhance the detection ability of the targets.The experimental results show that the proposed method outperforms the existing semantic segmentation methods in the mean intersection over union(mIoU)and reduces the incidence of missed and error detection of targets.
作者
丁俊华
袁明辉
Ding Junhua;Yuan Minghui(Terahertz Technology Innovation Research Institute,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《光电工程》
CAS
CSCD
北大核心
2023年第12期70-80,共11页
Opto-Electronic Engineering
基金
国家自然科学基金资助项目(61601291)
上海市科委专项资助(14dz1206602)。
关键词
毫米波合成孔径雷达
违禁品检测
深度学习
语义分割
双分支多尺度融合网络
millimetre-wave synthetic aperture radar
contraband detection
deep learning
semantic segmentation
dual-branch multi-scale fusion network