期刊文献+

基于两阶段卡尔曼滤波的四旋翼无人机自主预测维护 被引量:1

Quadrotor UAV predictive maintenance utilizing a two-stage Kalman filter approach
下载PDF
导出
摘要 本文针对多执行器退化的四旋翼无人机,基于机体性能状态的健康感知,通过反馈调节权值矩阵实现了无人机的自主维护.文中首先建立了四旋翼无人机退化模型,并基于预测性维护和模型预测控制策略构建了自主预测维护体系架构;其次,采用两阶段卡尔曼滤波法实时估计无人机机体状态和各执行器退化量,并用熵权法将4个执行器退化量融合为一综合退化量;接着,基于马氏距离健康度计算机体失效阈值,求解无人机剩余寿命,在无人机不满足机体性能和时限性约束时,依据健康度评价实时调整权值矩阵实现自主维护.仿真结果表明,本文提出的自主预测维护方法能够有效延长机体寿命. In this paper,we propose a method to achieve autonomous maintenance of quadcopter unmanned aerial vehicle(UAV)with multi-actuator degradation by adjusting the weight matrix based on the health-aware body performance state.First,we establish a degradation model for quadrotor UAVs and then construct an autonomous predictive maintenance architecture based on the predictive maintenance and model predictive control strategies.Second,a two-stage Kalman filter method is used to estimate the body state of the UAV and the degradation of each actuator in real-time,and an entropy weighting method is used to fuse the degradation of the four actuators into a comprehensive degradation.Then,we calculate the failure threshold of the UAV based on the Mahalanobis distance health degree and solve the remaining lifetime of the UAV.When the UAV does not satisfy the body performance and time-bound constraints,the weight matrix is adjusted in real-time based on the health degree assessment to achieve autonomous maintenance.Simulation results show that the proposed method can effectively extend the life of the airframe.
作者 申富媛 李炜 蒋栋年 毛海杰 SHEN Fu-yuan;LI Wei;JIANG Dong-nian;MAO Hai-jie(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou Gansu 730050,China;Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou Gansu 730050,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第12期2265-2276,共12页 Control Theory & Applications
基金 国家自然科学基金项目(62263020,62063017)资助.
关键词 四旋翼无人机 多执行器退化 健康度 预测性维护 quadrotor UAV multiple actuator degradation health degree predictive maintenance
  • 相关文献

参考文献8

二级参考文献100

  • 1苗建国,王剑宇,张恒,苗强.无人机故障诊断技术研究进展概述[J].仪器仪表学报,2020(9):56-69. 被引量:24
  • 2蒋序平.网络性能综合评估方法IEMoNP的设计和实现[J].海军工程大学学报,2006,18(5):74-78. 被引量:8
  • 3张冬艳,胡铭曾,张宏莉.基于测量的网络性能评价方法研究[J].通信学报,2006,27(10):74-79. 被引量:53
  • 4王维彬,钟润添.一种基于贪心EM算法学习GMM的聚类算法[J].计算机仿真,2007,24(2):65-68. 被引量:15
  • 5张新程,付航,李天璞,等.物联网关键技术[M].北京:人民邮电出版社,2011.
  • 6Farahani Shahin. ZigBee wireless networks and transceivers[ M].Burlington:Elsevier Ltd,2008.
  • 7Shannon C E. Prediction and entropy of printed English [J]. BellSystem Technical Journal, 1951,30( 1) :50 —64.
  • 8Kulkam S G, Chaudhary A K, Nandi S, et al. Modeling and monitoring of batch processes using principal component a- nalysis (PCA) assisted generalized regression neural net- works (GRNN) [ J ]. Biochemical Engineering Journal, 2004, 18(3) :193 -210.
  • 9Narayan A, Marzouk Y,Xiu D B. Sequential data assimilation with multiple models [ J ]. Journal of Computational Physics, 2012,231(19) :6401 -6418.
  • 10Zhu Z B,Song Z H,Palazoglu A,et al. Process pattern con- struction and multi-mode monitoring [ J ]. Journal of Process Control, 2012,22 ( 1 ) : 247 - 262.

共引文献101

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部