摘要
使用导数定义以及数学归纳原理,探讨了三类含绝对值的函数的可导性,证明了(1)若y=|f(x)|在x_(0)点处可导,则y=f(x)在x_(0)点的可导性取决于f(x_(0))与f’(x_(0));(2)对于任意的正整数k,y=(x-a)^(k)|x-a|在x=a处具有k阶导数,不具有k+1阶导数;(3)若g(x)在x=a处连续,则y=|x-a|g(x)在x=a处的可导性取决于g(a).
By using the definition of derivative and the principle of mathematical induction,the differentiability of three kinds of functions with absolute values is discussed.It is proven that(1)If y=f(x)is derivable at the point x_(0),then the differentiability of y=f(x)at poin x_(0)depends on f(x_(0))and f'(x_(0));(2)For any positive integer k y=(x-a)^(k)|x-a|has a k order derivative at the point a,and no k+1 order derivative;(3)If g(x)is continuous at the point a,then the differentiability of y=|x-a|g(x)at point a depends on g(a).
作者
赵莉莉
ZHAO Lili(School of Mathematics and Statistics,Yunnan University,Kunming 650091,China)
出处
《高师理科学刊》
2024年第1期5-7,共3页
Journal of Science of Teachers'College and University
基金
云南省教育厅2020年自然科学基金项目(2020J0020)
云南大学2023年教育教学改革项目(2023Y22)。
关键词
绝对值
导数
数学归纳法
极限
连续性
absolute value
derivative
mathematical induction
limit
continuity