摘要
飞机结构X射线图像评定过程存在复杂背景下裂纹分割不准确、检出难等问题。基于高效层聚合网络提出一种飞机结构X射线裂纹图像智能评定模型(ELAN-Seg),将ELAN-Seg模型和DeepLabv3+模型的射线图像裂纹分割能力进行对比,结合图像处理技术对模型分割的裂纹长度进行评估,利用飞机强度试验及外场维护过程采集的X射线图像对模型进行验证。结果表明:分割的最小裂纹长度约为3 mm,ELAN-Seg模型对复杂背景射线图像裂纹分割更加准确,裂纹漏检率小于3.8%,该模型具有工程适用性。
In the process of aircraft structure X-ray images evaluation,there are some problems such as inaccurate crack segmentation and difficult crack detection under complex background.An intelligent evaluation model(ELAN-Seg)for X-ray crack images of aircraft structures is proposed based on efficient layer aggregation network.The ELAN-Seg model is compared with the DeepLabv3+model in the crack segmentation ability of the Xray images.Combined with image processing technology,the crack length of model segmentation is evaluated,and the model is verified by X-ray images acquired during aircraft strength test and field maintenance.The results show that the segmented minimum crack length is about 3 mm,the ELAN-Seg model is more accurate in crack segmentation of complex background X-ray images,and the crack detection rate is less than 3.8%.The proposed model has engineering applicability.
作者
贾文博
汪洪量
奚之飞
樊俊铃
杨胜春
张伟
赵延广
JIA Wenbo;WANG Hongliang;XI Zhifei;FAN Junling;YANG Shengchun;ZHANG Wei;ZHAO Yanguang(National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China;State-owned Wuhu Machinery Factory,Wuhu 241000,China;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116023,China)
出处
《航空工程进展》
CSCD
2024年第1期97-104,共8页
Advances in Aeronautical Science and Engineering
基金
国家自然科学基金(51601175)
航空科学基金(20200009023004)。
关键词
X射线
裂纹图像
高效层聚合网络
注意力机制
智能评定
X-ray
crack image
efficient layer aggregation network
attention mechanism
intelligent evaluation