摘要
基于FVCOM(Finite-Volume Coastal Ocean Model)模式,采用拉格朗日粒子追踪方法和染色示踪方法开展珠海市前山河污染物溯源预警数值模拟研究,在理想条件下开展实验,模拟潮汐、风场和径流的不同组合对污染物移动的影响,对漂移路径和扩散情况的差异进行对比分析,并进行污染物溯源实验。结果表明:潮汐、风和径流均能显著影响污染物的移动,其中径流流量的作用尤为明显;上游更大流量河水的输入有助于快速排出污染物;水下释放的污染物在原地滞留时间更长,局部浓度较高,不易被稀释;污染物的分布范围更多取决于风向,而不是风速。溯源实验结果表明大部分溯源结果与污染物投放点相符,可以为进一步污染治理和研究提供参考。
Based on FVCOM(Finite-Volume Coastal Ocean Model),the Lagrangian particle tracking method and dye-tracking method are used to carry out numerical simulations on pollutant traceability and early warning of the Qianshan River in Zhuhai.Experiments were carried out under idealized conditions to simulate the influence of various combinations of tide,wind,and flow on pollutant movement.The differences in drift path or diffusion rate were compared and analyzed.The results show that the tide,wind,and river flow all have significant influences on pollutant movement,especially the river flow.Strong river flow from upstream favors the discharge of pollutants.Pollutants released in deep water tend to stay in initial location longer and are harder to be diluted than those released in surface water.Wind direction plays a more dominant role in affecting the distribution of pollutants than wind speed does.The results of traceability experiments show that most of the traceability results are consistent with the pollutant release locations,and provide useful reference for further pollution control and research.
作者
游志伟
徐广珺
刘雨立
谢文鸿
刘志国
董昌明
YOU Zhiwei;XU Guangjun;LIU Yuli;XIE Wenhong;LIU Zhiguo;DONG Changming(School of Marine Sciences,Nanjing University of Information Science&Technology,Nanjing 210044,China;School of Electronics and Information Engineering,Guangdong Ocean University,Zhanjiang 524088,China;Lianyang Navigation Services Group Co.,Ltd.,Zhoushan 316000,China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),Zhuhai 519000,China)
出处
《海洋科学进展》
CAS
CSCD
北大核心
2024年第1期170-184,共15页
Advances in Marine Science
基金
江苏省自然资源发展专项资金(海洋科技创新)资助项目(JSZRHYKJ202102)
国家自然科学基金项目(42192562、42250710152和42130405)
南方海洋科学与工程广东省实验室(珠海)自主科研项目(SML2020SP007)。