期刊文献+

基于改进YOLOv4的混凝土裂缝检测方法 被引量:1

Improved YOLOv4-based concrete crack detection method
下载PDF
导出
摘要 为了解决深度学习目标检测模型在混凝土裂缝应用上检测精度低、检测速度慢等问题,提出一种基于改进YOLOv4的混凝土裂缝检测方法。首先将YOLOv4的主干特征提取网络替换为轻量级网络Mobilenetv1,并且将YOLOv4加强特征提取网络中的普通标准卷积修改为深度可分离卷积;其次在PANet模块部分添加轻量级注意力模块CBAM(Convolutional Block Attention Module),在控制参数量的基础上提高裂缝目标检测的精度;最后用模拟人类视觉的RFB-s模块代替YOLOv4中的空间金字塔池化模块(Spatial Pyramid Pooling, SPP),扩大感受野,提高检测精度。实验结果表明,与传统YOLOv4相比,本模型的mAP增加三个百分点,参数量减少至14 M,检测速度可达42帧每秒。 A concrete crack detection method based on improved YOLOv4 is proposed to address the problems of low detection accuracy,large number of model parameters and slow detection speed in current deep learning methods for detecting concrete cracks.Firstly,the backbone feature extraction network of YOLOv4 is replaced by the lightweight network Mobilenetv1,and the ordinary standard convolution in the enhanced feature extraction network of YOLOv4 is modified into a depth-separable convolution;secondly,the lightweight attention module CBAM(Convolutional Block Attention Module)in the PANet module to improve the accuracy of crack target detection with a controlled amount of parameters;finally,the Spatial Pyramid Pooling(SPP)module in YOLOv4 is replaced by the RFB-s module that simulates human vision.The experimental results show that compared to conventional YOLOv4,the mAP of this model increases by three percentage points,the amount of parameters is reduced to 14 M and the detection speed is up to 42 frames per second.
作者 谌婷婷 魏怡 SHEN Tingting;WEI Yi(College of Automation,Wuhan University of Technology,Wuhan 430070,China)
出处 《激光杂志》 CAS 北大核心 2024年第1期80-85,共6页 Laser Journal
基金 国家自然科学基金资助项目(No.51177114) 湖北省技术创新重大专项(No.2019AAA016)。
关键词 裂缝检测 YOLOv4 Mobilenetv1 注意力机制 RFB-s crack detection YOLOv4 Mobilenetv1 attention mechanism RFB-s
  • 相关文献

参考文献7

二级参考文献83

  • 1陈波,张华,汪双,王皓冉,刘昭伟,李永龙,谢辉.基于全卷积神经网络的坝面裂纹检测方法研究[J].水力发电学报,2020(7):52-60. 被引量:25
  • 2石钰锋,彭斌,祝志恒,耿大新,阳军生.隧道衬砌裂缝精细化识别及其评价[J].公路交通科技,2020,37(2):99-106. 被引量:8
  • 3于仕琪,刘瑞祯.学习OpenCV(中文版)[M].北京:清华大学出版社,2009.
  • 4Rafael C Gonzalez.Digital image processing[M].2nd ed.Beijing:Publishing House of Electronics Industry,2007:463-491.
  • 5Wu B, Nevatia R. Detection of multiple, p~rtially occluded humans in a single image by Bayesian combination of edgelet part detectors. In: Proceedings of the 10th IEEE Inter- national Conference on Computer Vision. Beijing, China: IEEE. 2005. 90-97.
  • 6Zhao T, Nevatia R, Wu B. Segmentation and tracking of multiple humans in crowded environments. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2008, 30(7): 1198--1211.
  • 7Chan A B, Liang Z S J, Vasconcelos N. Privacy preserving crowd monitoring: counting people without people models or tracking. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE. 2008. 1-7.
  • 8Chan A B, Vasconcelos N. Counting people with low-level features and Bayesian regression. IEEE Transactions on Im- age Processing, 2012, 21(4): 2160-2177.
  • 9Idrees H, Saleemi I, Seibert C, Shah M. Multi-source multi- scale counting in extremely dense crowd images. In: Pro- ceedings of the 2013 IEEE Conference on Computer Vi- sion and Pattern Recognition. Portland, USA: IEEE, 2013. 2547-2554.
  • 10Lempitsky V, Zisserman A. Learning to count objects in images. In: Proceedings of Advances in Neural Informa- tion Processing Systems. Vancouver, Canada: NIPS, 2010. 1324-1332.

共引文献101

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部