摘要
Electron systems in low dimensions are enriched with many superior properties for both fundamental research and technical developments. Wide tunability of electron density, high mobility of motion, and feasible controllability in microscales are the most prominent advantages that researchers strive for. Nevertheless, it is always difficult to fulfill all in one solid-state system. Two-dimensional electron systems(2DESs) floating above the superfluid helium surfaces are thought to meet these three requirements simultaneously, ensured by the atomic smoothness of surfaces and the electric neutrality of helium. Here we report our recent work in preparing, characterizing, and manipulating 2DESs on superfluid helium. We realized a tunability of electron density over one order of magnitude and tuned their transport properties by varying electron distribution and measurement frequency. The work we engage in is crucial for advancing research in many-body physics and for development of single-electron quantum devices rooted in these electron systems.
作者
魏浩然
吴蒙蒙
王任飞
何明城
Hiroki Ikegami
刘阳
程智刚
Haoran Wei;Mengmeng Wu;Renfei Wang;Mingcheng He;Hiroki Ikegami;Yang Liu;Zhi Gang Cheng(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;International Center for Quantum Materials,Peking University,Beijing 100871,China;School of Physics,University of Chinese Academy of Sciences,Beijing 100049,China;Songshan Lake Materials Laboratory,Dongguan 523808,China)
基金
supported by the Beijing Natural Science Foundation (Grant No. JQ21002)
the National Natural Science Foundation of China (Grant No. T2325026)
the National Key R&D Program of China(Grant No. 2021YFA1401902)
the Key Research Program of Frontier Sciences,CAS (Grant No. ZDBS-LY-SLH0010)
the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-047)。