期刊文献+

基于深度学习和多源遥感数据的玉米种植面积提取 被引量:1

Extraction of maize planting area based on deep learning and multi-source remote sensing data
下载PDF
导出
摘要 玉米作为我国主要粮食作物之一,及时准确监测其种植范围及面积对农业产能评估、保障粮食安全具有重要意义。以华北平原典型农业区——原阳县为例,基于欧空局Sentinel-1 SAR和Sentinel-2 MSI遥感影像数据,在谷歌地球引擎云平台的支持下通过提取雷达后向散射系数时序曲线以及归一化植被指数(NDVI)时序曲线,搭建卷积神经网络(CNN)模型,并将时序数据输入模型得到典型地物分类结果,提取了研究区玉米种植区域,利用野外调查数据进行精度验证,并与随机森林分类对种植区的提取结果进行对比。结果表明,基于光学和SAR融合遥感影像数据的识别效果最佳,总体精度达到93.33%,κ系数为0.911;与随机森林分类法相比,卷积神经网络分类的总体精度更高,分类效果更好。因此,采用卷积神经网络以及多源遥感数据的融合能够实现玉米种植面积的准确监测。
作者 吕伟 宋轩 杨欢 Lyu Wei
出处 《江苏农业科学》 北大核心 2023年第23期171-178,共8页 Jiangsu Agricultural Sciences
基金 国家重点研发计划(编号:2017YFD0800605-5)。
  • 相关文献

参考文献18

二级参考文献247

共引文献226

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部