期刊文献+

Efficient water disinfection with ball milled Mg-biochar: The key role of trace Cu

原文传递
导出
摘要 In this study, magnesium and coconut shell carbon (CSC) were prepared by a ball milled process and used for water disinfection with adsorbing tiny amounts of copper(II). Dissolved oxygen (DO) was reduced to hydrogen peroxide (H_(2)O_(2)) via a two-electron pathway by Mg corrosion. Cu(II) in the wastewater will be enriched on the CSC surface and efficiently catalyzes H2O2 for inactivating E. coli. The results show that E. coli with an initial concentration of approximately 106 CFU/mL was under the detection limit (<4 CFU/mL) within 15 min. All of the Cu(II) could be adsorbed by the composite and catalyzed H2O2 to different active species. The quenching experiments, electron spin resonance (ESR) capture measurements and the UV-vis spectroscopy detection confirmed the present of the hydroxyl radicals (·OH), superoxide radicals (·O_(2)^(-)) and Cu(III). Different with tradition Fenton like process, Cu(III), rather than radicals, played the major role during the Mg-CSC/Cu(II) process. In addition to the cellular membrane damage, most of the bacterial genomic DNA was also be degraded and the bacterial reactivation was avoided. The Mg-CSC/Cu(II) process also showed a satisfied disinfection performance in real wastewater treatment. Overall, this study provides a new strategy for water disinfection.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期412-417,共6页 中国化学快报(英文版)
基金 the National Natural Science Foundation of China (No. 22006016) the Key Project of Fujian Provincial Department of Science and Technology (Nos. 2021Y0009 and 2019Y0010) the Natural Science Foundation of Fujian Province, China (No. 2021J011026).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部