期刊文献+

基于机器学习的膝关节损伤检测方法

Machine learning based knee joint injury detection method
下载PDF
导出
摘要 文章提出了一种基于机器学习的膝关节损伤检测方法。该方法利用加速度计采集的膝关节摆动信号,首先通过小波变换降低信号中的噪声能量,从而提高信噪比。接着,利用小波包分解提取小波能量,并通过梅林滤波器组计算信号的梅林倒谱系数。随后,将小波能量与梅林倒谱系数融合,形成融合特征,并通过主成分分析去除冗余信息。最后,采用最小二乘支持向量机、径向基神经网络和贝叶斯网络对健康和受损的膝关节摆动信号进行分类。实验结果表明,与现有方法相比,该方法在膝关节损伤检测方面具有更高的准确率。 This paper proposes a machine learning-based knee injury detection method.The method utilises the knee oscillation signal acquired by an accelerometer,and first reduces the noise energy in the signal by wavelet transform,thus improving the signal-to-noise ratio.Next,the wavelet energy is extracted using wavelet packet decomposition and the Merlin cepstrum coefficients of the signal are calculated by the Merlin filter bank.Subsequently,the wavelet energy is fused with the Merlin cepstrum coefficients to form a fusion feature,and the redundant information is removed by principal component analysis.Finally,least squares support vector machine,radial basis neural network and Bayesian network were used to classify healthy and damaged knee oscillating signals.The experimental results show that the method has higher accuracy in knee injury detection compared with existing methods.
作者 朱俊 ZHU Jun(Anhui Technical College of Water Resources and Hydroelectric Power,Hefei 231603,China)
出处 《安徽水利水电职业技术学院学报》 2023年第4期31-34,68,共5页 Journal of Anhui Technical College of Water Resources and Hydroelectric Power
基金 安徽省高校自然科学研究重点项目(2022AH052304,KJ2020A1041)。
关键词 损伤检测 小波包分解 梅林倒谱系数 主成分分析 神经网络 damage detection wawelet packet decomposition Merlin cepstrum coefficient principal component analysis neural network
  • 相关文献

参考文献5

二级参考文献62

  • 1丁瑾,袁振海.小电流接地系统行波测距法的应用[J].电测与仪表,2008,45(6):15-19. 被引量:9
  • 2谢华刚,阮怀宁,吴玲丽,赵正信,余华中,吴翔.复合型切缝药包机理分析及微差爆破试验[J].煤炭学报,2010,35(S1):68-71. 被引量:15
  • 3Felson DT, Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum, 1988, 41 : 1343-1355.
  • 4Yelin E. The economics of osteoarthrits . In : Brandt K, Doherty M, Lohmander LS, eds. Osteoarthrits, New York: Oxford University Press;1998. 23-30.
  • 5Dieppe PA, Cushnaghan J, Shepstone L, et al. The Bristol " OA500" Study: progression of osteoarthrits (OA) over 3 years and the relationship between clinical and radiographic changes at the knee joint. Osteoarthritis Cartilage, 1997, 5 : 87-97.
  • 6Oliveria SA, Felson DT, Reed JI, et al. Incidence of symptomatic hand, hip, and knee osteorthrits among patients in a health maitenance organization. Arthritis Rheum, 1995, 38 : 1134-1141.
  • 7Sharmta L, Pai-Y-C, Holtkamp K, et al. Is knee joint proprioception worse in the osteoarthritic knee versus the unaffected knee osteoarthritis? Arthritis Rheum, 1997, 40: 1518-1525.
  • 8Ala-Kokko L, Baldwin CT, Moskowitz RW, et al. Single base mutation in the type Ⅱ procollagen gene(COL2A1) as a cause of primary osteoarthritis associated with a mild chondrodysplasia. Proc Natl Acad Sci U SA, 1990, 87:6565-6568.
  • 9Radin EL. Mechanical aspects of osteoarthritis. Bull Rheum Dis, 1976,26 : 862-865.
  • 10Dequeker J, Boonen S, Aerssens J, et al. Inverse relationship osteoarthritis-osteoporosis: what is the evidence? What are the consequences? Br J Rheumatol, 1996, 35: 813-820.

共引文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部