期刊文献+

基于边窗滤波的高动态红外图像压缩增强算法 被引量:1

High Dynamic Infrared Image Compression and Enhancement Algorithm Based on Side Window Filtering
原文传递
导出
摘要 红外热成像系统采集的数据大都是高动态范围,为了实现高动态红外图像的可视化,动态范围压缩和细节增强技术的研究至关重要。针对传统方法存在的梯度反转伪影、低对比度细节丢失、背景噪声过增强等问题,提出一种基于边窗滤波的高动态红外图像压缩增强方法。首先,采用边窗滤波将原始红外图像分解为基础分量和细节分量;然后,根据基础分量的灰度级分布情况,设计一种自适应阈值的平台直方图算法,对基础分量进行压缩;接着,利用双边滤波器核权重分布特点,生成自适应增益系数,对细节分量进行增强;最后,对基础分量和细节分量进行加权融合,并将结果量化到8位动态范围。实验结果表明,与经典的压缩增强方法相比,所提方法对强边缘具有更好的保边效果,可以有效避免梯度反转伪影和光晕问题,细节信息更丰富,背景噪声抑制效果更好,对不同场景的适应性更强。 Data collected via infrared thermal imaging systems are primarily in high dynamic range.Thus,research on dynamic range compression and detail enhancement technology is crucial to achieve visualization of high dynamic infrared images.This paper addresses the challenges of gradient reversal artifacts,low contrast detail loss,and background noise over enhancement in traditional methods.In this paper,we propose a high dynamic infrared image compression and enhancement method based on side window filtering.First,side window filtering is used to decompose the original infrared image into basic and detail components.Then,an adaptive threshold platform histogram algorithm is designed based on the grayscale distribution of the basic component in order to compress the basic component.The detail component is enhanced using the adaptive gain coefficient generated via the weight distribution characteristics of the bilateral filter core.Finally,the basic and detail components are weighed and fused and quantified to an 8-bit dynamic range.According to experimental results,compared with classic compression enhancement methods,the proposed method has a superior edge preservation effect on strong edges,can effectively avoid gradient inversion artifacts and halo problems,and has richer detail information,better background noise suppression effect,and stronger adaptability to different scenes.
作者 桑贤侦 朱鸿泰 程虎 李敏 胡楷 唐俊 郝明东 袁政 Sang Xianzhen;Zhu Hongtai;Cheng Hu;Li Min;Hu Kai;Tang Jun;Hao Mingdong;Yuan Zheng(No.58 Research Institute,China Electronics Technology Group Corporation,Wuxi 214035,Jiangsu,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2023年第24期131-139,共9页 Laser & Optoelectronics Progress
基金 湖北省自然科学基金(2021CFB527) 江苏省“双创博士”项目(JSSCBS20211447)。
关键词 红外成像 边窗滤波 动态范围压缩 细节增强 自适应增益 infrared imaging side window filtering dynamic range compression detail enhancement adaptive gain
  • 相关文献

参考文献10

二级参考文献70

  • 1范永杰,范宏波,李志广.288×4红外热像仪实时图像灰度级调整[J].红外技术,2006,28(5):280-282. 被引量:3
  • 2K.R.Castleman.数字图像处理(朱志刚,林学訚,石定机,等,译者)[M].北京:电子工业出版社,1998.
  • 3数字图像细节增强(DDE)技术说明[EB/OL].www.flir.com2005.
  • 4Francesco Branchitta, Marco Diani, Giovanni Corsini. New technique for the visualization of high dynamic range infrared images Source[J]. OpticalEngineering, 2009, 48(9): 096401 1-9.
  • 5Fan Z, Bi D, He L, et al. Noise suppression and details enhancement for infrared image via novel prior[J]. Infrared Physics g> Technology, 2016(74): 44 52.
  • 6Jobson D J, Rahman Z U, Woodell G A. Properties and performance of a center/surround Retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451 462.
  • 7Kimmel R, Elad M, Shaked D, et al. A variational framework for Retinex[J]. International Journal of Computer Vision, 2003, 52(1): 7-23.
  • 8IEEE Transactions International Journal of Computer Vision Ma W, Morel J M, Osher S, et a!. An Ll-based variational model for Retinex theory and its application to medical images [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2011 : 153-160.
  • 9Ma W, Osher S. A TV Bregman iterative model of Retinex theory[J]. Inverse Problems and Imaging, 2012, 6(4) : 697- 708.
  • 10Zooso D, Tran G, Osher S. A unifying Retinex model based on non-local differential operators[C]. SPIE, 2013, 8657: 865702.

共引文献96

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部