摘要
中红外衰减全反射光谱技术在人体血糖检测方面具有快速、绿色的天然优势。但人体血液中其他组分的存在会影响葡萄糖含量检测的准确度。因此,研究了人体血液中胆固醇、白蛋白以及尿素的存在对红外光谱法血糖检测的干扰程度。以117份含有不同干扰物以及不同质量浓度的葡萄糖仿体溶液为研究对象,对原始光谱进行SG(Savitzky-Golay)平滑处理后构建偏最小二乘回归模型,并构建Clarke Error Grid以及预测值与真实值对比图进行进一步分析。结果表明:全干扰物模型预测集相关系数(R_(p))以及预测集均方根误差(RMSEP)分别为0.9785和40.0187,有85.7%的预测结果落在Clarke Error Grid可靠区(A区);缺失胆固醇模型的R_(p)以及RMSEP分别为0.9042和175.7292,有40%的预测结果落在A区;缺失白蛋白模型的R_(p)以及RMSEP分别为0.9616和103.6627,有42.9%的预测结果落在A区;缺失尿素模型的R_(p)以及RMSEP分别为0.9742和38.6716,所有预测结果都落在A区。由此可以看出,胆固醇的干扰程度最大,白蛋白次之,尿素产生的干扰较小。本研究对提高红外光谱法葡萄糖检测的准确度具有一定帮助以及参考价值。
Mid-infrared attenuated total reflection spectroscopy has the natural advantage of fast and green blood glucose detection in humans.However,the presence of other components in human blood can affect the accuracy of glucose detection.Therefore,we study the interference degree of the presence of cholesterol,albumin and urea in human blood on the detection of blood glucose by infrared spectroscopy.Taking 117 parts of glucose mimicry solution containing different interferences and different mass concentrations as the research object,the original spectrum is smoothed by Savitzky-Golay to construct a partial least squares regression model,and the Clarke Error Grid and comparison plot of predicted value and true value are constructed for further analysis.The results show that the prediction set correlation coefficient(R_(p))and root mean square error(RMSEP)of the prediction set of the total interferer model are 0.9785 and 40.0187,respectively,and 85.7%of the prediction results fall in the Clarke Error Grid A region.The R_(p)and RMSEP of the missing cholesterol model are 0.9042 and 175.7292,respectively,and 40%of the predictions fall in region A.The R_(p)and RMSEP of the missing albumin model are 0.9616 and 103.6627,respectively,and 42.9%of the predictions fall in region A.The R_(p)and RMSEP of the urea deletion model are 0.9742 and 38.6716,respectively,and all predictions fall in region A.It can be seen that cholesterol has the greatest degree of interference,followed by albumin,and urea produces the least interference.This study has certain help and reference value for improving the accuracy of glucose detection by infrared spectroscopy.
作者
岳岩松
张朱珊莹
朱思聪
曹汇敏
郑冬云
谢勤岚
Yue Yansong;Zhang Zhushanying;Zhu Sicong;Cao Huimin;Zheng Dongyun;Xie Qinlan(School of Biomedical Engineering,South-Central Minzu University,Wuhan 430074,Hubei,China;Key Laboratory of Cognitive Science,State Ethnic Affairs Commission,South-Central Minzu University,Wuhan 430074,Hubei,China;Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis&Treatment,Wuhan 430074,Hubei,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2023年第24期292-298,共7页
Laser & Optoelectronics Progress
基金
国家自然科学基金(61501526,61178087)
中南民族大学中央高校基本科研业务费专项资金项目(CZQ22006)。
关键词
光谱学
光谱分析
光谱预处理
葡萄糖质量浓度
定量模型
spectroscopy
spectrum analysis
spectral pre-processing
glucose mass concentration
quantitative model