期刊文献+

嗜热厌氧菌共培养发酵玉米秸秆产氢的研究

A Study on Hydroger Production from Corn Stran by Co-culture of Thermophilic Anaerobic Bacteria
下载PDF
导出
摘要 氢能是对环境无害且可以替代化石燃料的可持续性能源。利用嗜热厌氧菌暗发酵木质纤维素生产氢气是一种极具潜力的生物制氢技术,具有清洁、高效和可再生的优势。构建解糖热解纤维素菌和热解糖厌氧杆菌共培养体系,考察两株菌株接种比例、总接种量和底物浓度对玉米秸秆发酵产氢的影响。实验结果表明,在发酵体系初始pH值7.0,培养温度60℃条件下,当解糖热解纤维素菌和热解糖厌氧杆菌接种比例为3∶2,菌种总接种量为6%,秸秆浓度为15 g·L^(-1)时,体系产氢能力最强。此时,发酵体系产氢量累积达到65.6 mL·g-1-秸秆,氢气含量为46.9%,最大产氢速率为1.47 mL·g^(-1)h^(-1)。 Hydrogen energy is a sustainable energy source that is environmentally friendly and can replace fossil fuels.The use of thermophilic anaerobic bacteria for dark fermentation of lignocellulose to produce hydrogen is a highly promising biological hydrogen production technology,with the advantages of cleanliness,efficiency,and renewability.This study constructed a co-culture system of Caldicellulosiruptor saccharolyticus and Thermoanaerobacterium thermosaccharolyticum,and then investigated effects of inoculation ratio of the two strains,total inoculation amount,and substrate concentration on hydrogen production during corn straw fermentation.The experimental results showed that under the conditions of initial pH 7.0 and cultivation temperature of 60℃,hydrogen production capacity of fermentation system was strongest when inoculation ratio of the two strains was 3∶2,total inoculation amount was 6%,and straw concentration was 15 g·L^(-1).Under this condition,the hydrogen production reached 65.6 mL·g-1-straw,and the hydrogen content was 46.9%,the maximum hydrogen production rate achieved 1.47 mL·g^(-1)h^(-1).
作者 黎霞 邹淑琦 徐延亮 贺静 LI Xia;ZOU Shuqi;XU Yanliang;HE Jing(Biogas Institute of Ministry of Agriculture and Rural Affairs,Chengdu 610041,China)
出处 《中国沼气》 CAS 2024年第1期19-22,共4页 China Biogas
基金 四川省科技厅重点研发项目(2022YFS0479) 四川省区域创新合作项目(2023YFQ0030) 国家现代农业产业技术体系四川创新团队项目(ccxtd-2020-7)。
关键词 嗜热厌氧菌 秸秆 发酵产氢 产氢分析 thermophilic anaerobic bacteria corn straw fermentative hydrogen production hydrogen production evaluation
  • 相关文献

参考文献2

二级参考文献40

  • 1张雪松,朱建良.影响纤维素类物质厌氧发酵产氢因素的研究[J].生物技术通报,2005,21(2):47-50. 被引量:14
  • 2Rainey F A,Donnison A M,Janssen P H. Description of Caldicellulosiruptor saccharolyticus gen-nov,sp-nov-an obligately anaerobic,extremely thermophilic,cellulolytic bacterium[J].{H}FEMS Microbiology Letters,1994,(03):263-266.
  • 3Blochl E,Burggraf S,Fiala G. Isolation,taxonomy and phylogeny of hyperthermophilic microorganisms[J].{H}World Journal of Microbiology and Biotechnology,1995,(01):9-16.
  • 4Vanfossen A L,Lewis D L,Nichols J D. Polysaccharide degradation and synthesis by extremely nermophilic anaerobes[J].{H}Annals of the New York Academy of Sciences,2008.322-337.
  • 5Van De Werken H J G,Verhaart M R A,Vanfossen A L. Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus[J].{H}APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2008,(21):6720-6729.
  • 6Yang S J,Kataeva I,Wiegel J. Classification of"Anaerocellum thermophilum" strain DSM 6725 as Caldicellulosiruptor bescii sp.nov[J].Int J Syst Evolut Microbiol,2010.2011-2015.
  • 7Yang S J,Kataeva I,Hamilton-Brehm S D. Efficient degradation of lignocellulosic plant biomass,without pretreatment,by the thermophilic anaerobe"Anaerocellum thermophilum" DSM 6725[J].{H}APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2009,(14):4762-4769.
  • 8Dam P,Kataeva I,Yang S J. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725[J].{H}Nucleic Acids Research,2011,(08):3240-3254.
  • 9Kataeva I A,Yang S J,Dam P. Genome sequence of the anaerobic,thermophilic,and cellulolytic bacterium "Anaerocellum thermophilum" DSM 6725[J].{H}Journal of Bacteriology,2009,(11):3760-3761.
  • 10Hamilton-Brehm S D,Mosher J J,Vishnivetskaya T. Caldicellulosiruptor obsidiansis sp.nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from obsidian pool, yellowstone national park[J].{H}APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2010,(04):1014-1020.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部