摘要
目的:基于人工神经网络和摄氧量动力学,以心率(heart rate,HR)和呼吸频率(breathing frequency,BF)为自变量建立准确的身体活动能量消耗(physical activity energy expenditure,PAEE)预测模型。方法:招募24名健康大学生(年龄22.2岁±2.0岁,身高174 cm±9 cm,体重67.1 kg±12.4 kg),参加3次运动测试,包括递增负荷运动、恒定负荷运动(40%和70%VO_(2)max)和4种身体活动(6.4 km/h步行、体感游戏、负重行走、上下楼梯)。采集运动中HR、BF和摄氧量(VO_(2)),并建立PAEE预测的BP神经网络模型。采用Bland-Altman散点图对模型预测的准确性进行分析,并计算了平均绝对误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)以评估模型预测的误差。结果:建立的模型在步行活动中,模型预测的VO_(2)(18.50±1.19 mL/kg/min)与观测值(18.34±1.44 mL/kg/min)接近,MAE=1.31 mL/kg/min,MAPE仅为7.32%。在体感游戏中,模型预测(19.31±1.22 mL/kg/min)与观测值(17.81±2.44 mL/kg/min)存在较大差异,其MAPE仍然控制在13.04%。对于负重行走和上下楼梯,MAPE分别为14.21%和11.12%。Bland-Altman分析结果显示系统偏差为0.1068 mL/kg/min,表示预测VO_(2)略高于标准VO_(2)。结论:基于摄氧量动力学构建的BP神经网络模型可以较为准确地预测PAEE,展示了HR联合BF在预测PAEE方面的潜力。
Objective:This study aimed to devise an accurate predictive model for Physical Activity Energy Expenditure(PAEE)by leveraging artificial neural networks in conjunction with oxygen uptake kinetics,utilizing heart rate(HR)and breathing frequency(BF)as predictors.Methods:We engaged 24 healthy university students(mean age:22.2±2.0 years,height:174±9 cm,weight:67.1±12.4 kg)in a comprehensive exercise protocol.This encom⁃passed three distinct exercise tests:graded exercise tests,constant load exercises(40%and 70%VO_(2)max),and four varied physical activities(6.4 km/h walking,exergaming,loaded walking,and stair ascent/descent).Throughout these activities,we continuously recorded HR,BF,and oxygen uptake(VO_(2))to subsequently establish a BP neural network model for PAEE prediction.The prediction errors of model’s performance was calculated using the Bland-Altman scatter plots,mean absolute error(MAE),and mean absolute percentage error(MAPE).Results:For the 6.4 km/h walking,the model’s VO_(2) prediction(18.50±1.19 mL/kg/min)is close to the observed VO_(2)(18.34±1.44 mL/kg/min),yielding an MAE of 1.31 mL/kg/min and the MAPE of 7.32%.During the exergaming session,the model prediction(19.31±1.22 mL/kg/min)exhibited a noticeable deviation from the observed value(17.81±2.44 mL/kg/min),though the MAPE remained at 13.04%.During loaded walking and up/down stair activities the MAPEs were 14.21%and 11.12%respectively.Bland-Altman analysis showed a systematic deviation of 0.1068 mL/kg/min,which indicated that the predicted VO_(2) was slightly higher than the standard VO_(2).Conclusion:The BP neural net⁃work model based on oxygen uptake dynamics can accurately predict PAEE,which shows the potential of HR com⁃bined with BF in the prediction of PAEE.
作者
杨俊超
卢智慧
燕书婷
衣龙燕
陶宽
YANG Junchao;LU Zhihu;YAN Shuting;YI Longyan;TAO Kuan(School of Sport Science,Beijing Sport University,Beijing 100084,China;Institute of Sport and HealthScience,Beijing Sport University,Beijing 100084,China;School of Sports Engineering,Beijing SportUniversity,Beijing 100084,China;Beijing Sports Nutrition Engineering Research Center,Beijing,100084,China)
出处
《北京体育大学学报》
北大核心
2023年第11期18-27,共10页
Journal of Beijing Sport University
基金
国家重点研发计划项目“基于能量平衡原理的中国人运动能耗基准与健身指导方案”(项目编号:2018YFC2000601)
国家体育总局科技创新项目(项目编号:22KJCX005)。
关键词
BP神经网络
摄氧量
能量消耗
心率
呼吸频率
BP neural network
oxygen uptake dynamics
energy expenditure
heart rate
breathing frequency