期刊文献+

一种基于鲸鱼优化的TOA/AOA最优化定位算法 被引量:1

A TOA/AOA optimization localization algorithm based on whale optimization
下载PDF
导出
摘要 针对非视距(NLOS)环境下,基于最优化原理的无线定位算法在迭代运算后期容易陷入局部最优,进而导致定位精度下降的问题,提出一种基于非线性、自适应、动态惯性权重的鲸鱼优化到达时间(TOA)/到达角(AOA)最优化定位算法:基于双基站定位场景建立TOA/AOA混合定位模型;并且在对种群位置进行初始化时,在混合线性定位算法中增加角度约束条件避免种群在定位初期陷入局部最优;然后在搜索更新最优个体时,引入自适应动态惯性权重系数对鲸鱼优化算法进行改进,以更好地协调优化算法的全局随机搜索与局部寻优能力。仿真结果表明,与现有的粒子群优化(PSO)、鲸鱼优化(WOA)和改进的鲸鱼优化(MWOA)等智能优化算法相比,所提算法在迭代寻优过程中具有更快的收敛速度和更优的收敛精度;相较于WOA算法,其平均消耗时间可降低约50%,平均定位误差可降低约41%,定位性能更优。 Aiming at the problem that wireless localization algorithm based on optimization theory in non-line-of-sight(NLOS)environment is prone to fall into local optimum at the late stage of iterative operation,which leads to the degradation of localization accuracy,the paper proposed a whale-optimized time of arrival(TOA)/angle of arrival(AOA)optimal localization algorithm based on nonlinear,adaptive dynamic inertia weights:the hybrid TOA/AOA localization model based on double base stations localization scenario was built;and in the localization process,a hybrid linear localization algorithm with angle constraint condition was used to initialize the population position for avoiding the population from falling into local optimum at the early localization stage;then,when searching and updating the optimal individuals,adaptive dynamic inertia weight coefficient was introduced to improve the performance of whale optimization algorithm,in order to better coordinate and optimize the global stochastic search and local optimization-seeking capability of the algorithm.Simulational results showed that compared with existing intelligent optimization algorithms such as particle swarm optimization(PSO),whale optimization algorithm(WOA)and modified whale optimization algorithm(MWOA),the proposed algorithm would exhibit faster convergence speed and better convergence accuracy in the iterative optimization search process;moreover,compared with WOA algorithm,the average consumption time could be reduced by about 50%,the average positioning error could be reduced by about 41%,indicating a better localization performance.
作者 秦杰 邓平 罗锐 夏渔平 QIN Jie;DENG Ping;LUO Rui;XIA Yuping(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610097,China;School of Computer Science,Chengdu Normal Institute,Chengdu 611130,China)
出处 《导航定位学报》 CSCD 2023年第6期93-101,共9页 Journal of Navigation and Positioning
基金 国家自然科学基金(61871332)。
关键词 鲸鱼优化算法(WOA) 非视距(NLOS) 智能优化 无线定位 whale optimization algorithm(WOA) non-line-of-sight(NLOS) intelligent optimization wireless localization
  • 相关文献

参考文献5

二级参考文献23

  • 1陈国初,俞金寿.增强型微粒群优化算法及其在软测量中的应用[J].控制与决策,2005,20(4):377-381. 被引量:30
  • 2张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 3高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 4Kennedy J, Eberhart R C.Partiele swarm optimization[C]//Proceedhags of IEEE International Conference on Neural Networks.Perth: IEEE Press, 1995,4 : 1942-1948.
  • 5Boeringer D W, Wemer D H.Particle swarm optimization versus genetic algorithms for phased array synthesis[J].IEEE Trans on Antennas and Propagation, 2004,52 (3) : 771-779.
  • 6Shi X H, Liang Y C.Particle swarm optimization-based algorithms for TSP and generalized TSP[J].Information Processing Letters, 2007,103(5) : 169-176.
  • 7Chau K W.Application of a PSO-based neural network in analysis of outcomes of construction claims[J].Automation in Construction, 2007,16(5) :642-646.
  • 8Shi Y H,Eberhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, USA : IEEE Service Center, 1998 : 69-73.
  • 9Chatterjeea A, Siarry P.Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J].Computers & Operations Research,2006,33 : 859-871.
  • 10谢强,张磊,周良.基于改进粒子群优化算法的Ontology划分方法[J].华南理工大学学报(自然科学版),2007,35(9):118-122. 被引量:8

共引文献118

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部