摘要
随着中国汽车工业和市场的发展,汽车市场已经进入了存量竞争阶段。如何更加精确地了解消费者的需求变得愈发重要。文章利用互联网收集了大量购车用户的评论数据,并运用大数据技术对其进行了分析。首先对大量互联网数据进行清洗及分类处理;然后通过自然语义处理技术,对各个车型的所有评论数据进行了情感分类,并构建了满意指数;最后通过对满意指数的分析以及可视化展示,得出了消费者对汽车产品不同属性的满意度的权重和阈值。此外,除了通过数值化的满意度指数来发现市场的一般规律以外,还进一步通过观点抽取技术,从大量评论数据中提取出了消费者针对汽车产品某一属性或正面或负面的普遍观点。通过满意度指数和观点提取,并利用大数据技术,得出了消费者对热门车型满意度的一般规律,可以为汽车产品的研发提供了更加清晰和准确的指导。
With the development of the Chinese automobile industry and market,the automobile market has entered a stage of intense competition.It has become increasingly important to understand consumers'needs more accurately.In this study,a large amount of user review data on car purchases is collected using the internet,and big data technology is employed to analyze the data.Firstly,a significant amount of internet data is cleaned and classified.Then,through natural language processing techniques,sentiment analysis is conducted on all the review data for each car model,and a satisfaction index is constructed.Finally,through the analysis and visualization of the satisfaction index,the weights and thresholds of consumer satisfaction with different attributes of automotive products are determined.In addition to discovering general market patterns through numerical satisfaction index,this study further employ opinion extraction techniques to extract common positive or negative opinions of consumers towards specific attributes of automotive products from a large volume of review data. By utilizing satisfaction index and opinion extraction, this study, employs big data technology, obtains general patterns of consumer satisfaction with popular car models, provides clearer and more accurate guidance for the development of automotive products.
作者
汤潇健
周峰
明越
TANG Xiaojian;ZHOU Feng;MING Yue(Guangzhou Automobile Group Automotive Research&Development Center,Guangzhou 511434,China)
出处
《汽车实用技术》
2024年第3期163-169,共7页
Automobile Applied Technology
关键词
大数据技术
汽车行业
用户评论
消费者满意度
自然语言处理
Big data technology
Automobile industry
Customer comments
Consumer satisfaction
Natural language processing