期刊文献+

一种面向口腔移植骨分割的SA-UNet网络

SA-UNet neural network for oral grafted bone segmentation
下载PDF
导出
摘要 在牙齿种植治疗中,口腔移植骨分割对于辅助医生诊断有重要参考价值。口腔CBCT图像具有对比度较低,移植骨边缘模糊等诸多特征,严重制约着现有深度分割网络的应用。研究以U-Net为基准网络,通过设计一种新颖的轻量级Sharp-Attention模块,提出了一种改进的SA-UNet网络模型。具体地,在Sharp模块中,带锐化卷积核的Depthwise卷积操作通过锐化浅层特征以加强特征细节。CBAM模块提升模型对于图像低层信息的关注度。进而,采用新型联合损失函数,缓解样本比例失衡带来的影响。最后,在口腔移植骨数据集上验证了模型的有效性。在模型复杂度方面,与基准网络U-Net相比,在几乎没有增加计算开销的情况下,图像分割精度得到了有效的提升;在分割精度方面,与现有的主流医学分割模型对比,在IoU、Dice系数、Hausdorff距离三个评价指标上的表现最佳,得分达到了0.8665、0.9262、0.5092。 In dental implant treatment,oral grafted bone segmentation has important value for assisting doctors in diagnosis.Oral CBCT images have many features such as low contrast and blurred edges of bone and restrict the application of the segmentation networks.Taking U-Net as the benchmark network,an improved SA-UNet model is proposed by designing a novel lightweight Sharp-Attention module.Specifically,in the Sharp module,the depthwise convolution with a sharpening convolution kernel enhances feature details by sharpening shallow features.The CBAM improves the model's attention to the low-level information.Furthermore,a novel joint loss function is adopted to alleviate the imbalance of the samples.Finally,the effectiveness of the model is validated on the dataset.In terms of complexity,compared with U-Net,the segmentation accuracy has been effectively improved with almost no increase in computational overhead;compared with state-of-the-arts,the best performance is achieved on IoU,Dice coefficient and Hausdorff distance,with scores reaching 0.8665,0.9262,and 0.5092.
作者 徐常鹏 赵宇 丁德锐 XU Changpeng;ZHAO Yu;DING Derui(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《智能计算机与应用》 2023年第11期49-57,共9页 Intelligent Computer and Applications
基金 国家自然科学基金(61973219)。
关键词 口腔CBCT图像 移植骨分割 深度学习 SA-UNet 注意力机制 oral CBCT images grafted bone segmentation deep learning SA-UNet attention mechanism
  • 相关文献

参考文献5

二级参考文献56

  • 1杨伟,陈建新,周晓春,蔡惠芳,王兆平,胡翼江.多层螺旋CT齿科软件对牙及颌骨损伤的诊断价值[J].医学影像学杂志,2006,16(6):563-565. 被引量:3
  • 2方冬,宋少娟.牙颌面数字化X线成像技术的进展[J].医学影像学杂志,2006,16(8):850-852. 被引量:4
  • 3Al Rawi B, Hassan B, Vandenberge B,et al.利用CBCT进行牙齿三维表面重建的精度评估[J].口腔康复,2010,37(5):352-358.
  • 4Jerv Ce-Storm PM,Hagner M,Neugehauer,等[J].CBCT和口内x照片在牙周韧带假体应用中的比较[J].口腔外科内科与口腔放射学,2010,109(2):95-101.
  • 5Takane M,Sato S,Suzuki K,et al.CBCT在牙间隙可吸收薄膜检测中的临床应用[J].口腔科学,2010,52(1):63-69.
  • 6Scarfe WC, Li Z, Aboelmaaty W, et al. Cone beam computed tomograpby: essence, elements and steps to interpretation [J]. Aust Dent J, 20121 57(suppl 1): 46-60.
  • 7Sukovic P. Cone beam computed tomography in craniofacial imaging[J]. Orthod Craniofae Res, 2003, 6(suppl 1): 31- 36.
  • 8Feng Zhang, Bin Yan, Lei Li, et al. Practical geometric cali- bration for helical cone beam industrial computed tomography [J]. J XraySciTechnol, 2014, 22(1): 19-35.
  • 9Qu XM, Li G, Ludlow JB, et al. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010, 110(6): 770-776.
  • 10Tahmineh Razi, Mahdi Niknami, Fakhri Alavi Ghazani. Re lationship between hounsfield unit in CT scan and gray scale in CBCT[J]. J Dent Res Dent Clin Dent Prospects, 2014, 8(2) : 107-110.

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部