期刊文献+

基于卡尔曼滤波算法的车身高度观测 被引量:1

Body height observation based on Kalman filter algorithm
下载PDF
导出
摘要 为解决直接使用超声波以及激光雷达测距容易受到路面情况的干扰的问题,提出了一种基于卡尔曼滤波算法。运用MATLAB/Simulink建立整车模型,建立车身高度观测器,从而实现实时且准确地获得车身高度,为车辆控制策略提供准确的车辆质心高度参数。利用仿真模型进行双移线工况和减速带工况的仿真分析,对静止车辆施加随机激励进行了实车实验。仿真和实验结果表明:卡尔曼滤波算法的车身高度观测器可以实时且准确地获得车身高度,具有较好的精确度。 Since the direct use of ultrasonic and lidar ranging was easily interfered by road conditions,in order to solve the above contradiction,a Kalman filtering algorithm was proposed.Using MATLAB/Simulink,a vehicle model and a body height observer were established,so as to achieve real-time and accurate acquisition of body height.Accurate vehicle centroid height parameters for vehicle control strategies were provided.The simulation model was used to simulate and analyze the double-line shift condition and speed bump condition,and the random excitation was applied to the stationary vehicle to carry out the real vehicle experiment.Simulation and experimental results showed that the body height observer of Kalman filter algorithm can obtain the body height in real time and accurately,with good accuracy.
作者 鲍光锐 郑敏毅 张农 钟伟民 BAO Guangrui;ZHENG Minyi;ZHANG Nong;ZHONG Weimin(School of Automotive and Transportation,Hefei University of Technology,Hefei 230009,Anhui,China;Institute of Automobile Engineering Technology,Hefei University of Technology,Hefei 230009,Anhui,China)
出处 《农业装备与车辆工程》 2024年第2期44-48,共5页 Agricultural Equipment & Vehicle Engineering
基金 国家自然科学基金面上项目(52272392)。
关键词 卡尔曼滤波 高度观测 SIMULINK Kalman filter height observation Simulink
  • 相关文献

参考文献5

二级参考文献29

  • 1杨元喜,高为广.两种渐消滤波与自适应抗差滤波的综合比较分析[J].武汉大学学报(信息科学版),2006,31(11):980-982. 被引量:31
  • 2方子帆,邓兆祥.汽车磁流变半主动悬架控制方法研究[J].中国机械工程,2007,18(9):1121-1124. 被引量:7
  • 3AI-Shabi M, Gadsden S A, Habibi S R. Kalman filtering strate gies utilizing the chattering effects of the smooth variable struc ture fiher]-J:. Signal Processing, 2013, 93(2) :420-431.
  • 4Jwo D J, Wang S H. Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigationl-J:. IEEE Sensors Journal, 2007, 7(5): 778-789.
  • 5Gao W, Li J C. Adaptive Kahnan filtering for the integrated SINS/DVL system[J]. Journal of Computational Information Systems, 2013, 9(16): 6443-6450.
  • 6Kim K H, Lee J G, Park C G. Adaptive two-stage extended Kalman filter for a fault-toleranl INS-GPS loosely coupled sys- tem[J]. IEEE Trans. on Aerospace and Electronic Systems, 2009, 45(1): 125-137.
  • 7Sangsuk Iam S, Bullock T E. Analysis of discrete-time Kalman filtering under incorrect noise covariances[J]. IEEE Trans. on Automatic Control, 1990, 35(12) : 1304 - 1309.
  • 8Xiong K, Liu L D, Zhang H Y. Modified unscented Kalman fil- tering and its application in autonomous satellite navigation[J]. Aerospace Science and Technolol4y, 2009, 13(4) : 238 - 246.
  • 9Xu Y, Choi J, Dass S, et al. Sequential Bayesian prediction and adaptive sampling algorithms for mobile sensor networks[J]. IEEE Trans. on Automatic Control, 2012, 57(8) : 2078 - 2084.
  • 10Sarkka S, Nummenmaa A. Recursive noise adaptive Kalman fil- tering by variational Bayesian approximations[J]. IEEE Trans. on Automatic Control, 2009, 54(3) : 596 - 600.

共引文献122

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部