期刊文献+

基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测

Remaining life prediction of pinch rolls based on Yu parametric deep migration metric learning
下载PDF
导出
摘要 针对夹送辊历史数据少和相关寿命预测方法匮乏的问题,提出基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测方法。首先使用Yu范数深度度量学习(DMN-Yu)对振动信号提取深层特征,并以主成分分析法(PCA)和自组织映射神经网络(SOM)相结合对特征进行约简,构建一维健康因子(HI);再结合长短时记忆网络(LSTM)模型,通过迁移策略利用共享隐含层的方法对目标夹送辊进行预测分析。实验验证,经过深度迁移学习的LSTM模型预测效果更好,对夹送辊设备的健康状态评估及剩余使用寿命预测具有一定的指导意义。 To address the problems of little historical data of pinch rolls and the lack of relevant life prediction methods,a method for predicting the remaining life of pinch rolls based on Yu parametric deep migration metric learning was proposed.Firstly,Yu parametric depth metric learning(DMN-Yu)was used to extract deep features from vibration signals,and the features were combined with principal component analysis(PCA)and self-organizing mapping neural network(SOM)to construct a one-dimensional health factor(HI)by reduction.Then,the target pinch rolls were predicted and analyzed by a migration strategy using a shared hidden layer approach in combination with a long and short term memory network(LSTM)model.The experiment verified that the LSTM model with deep migration learning had a better prediction effect,which was a guideline for the health state assessment and remaining service life prediction of pinch rolls equipment.
作者 孟飞 徐增丙 王志刚 MENG Fei;XU Zengbing;WANG Zhigang(School of Mechanical Automation,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China)
出处 《农业装备与车辆工程》 2024年第1期157-161,共5页 Agricultural Equipment & Vehicle Engineering
关键词 夹送辊 寿命预测 Yu范数 深度度量学习 共享隐含层迁移 pinch rolls lifetime prediction Yu parametric deep metric learning shared hidden layer migration
  • 相关文献

参考文献4

二级参考文献39

  • 1Zhao Chumlin, Zheng chong-xun, Zhao Min, et al.. Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic[J]. Expert Systems with Applications, 2011, 38(3): 1859-1865.
  • 2Bengio Y and Delalleuu O. On the expressive power of deep architectures[J]. Lecture Notes in Computer Science, 2011, 6925: 18-36.
  • 3Bengio Y. Deep learning of representations for unsupervised and transfer learning[C]. JMLR: Workshop and Conference Proceedings, Washington, USA, 2012, 27:17- 36.
  • 4Yu D and Li D. Deep learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine, 2011, 28(1): 145-154.
  • 5Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11( 2010): 3371-3408.
  • 6Lee T, Mumford D, Romero R, et al.. The role of the primary visual cortex in higher level vision[J]. Vision Research, 1998, 38(15-16): 2429-2454.
  • 7Wong W K and Sun M M. Deep learning regularized fisher mappingsIJ]. IEEE Transactions on Neural Networks, 2011, 22(10): 1668-1675.
  • 8Yah S C, Xu D, Zhang B Y, et al.. Graph embedding and extensions: a general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 9Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 28,313: 504-507.
  • 10Hinton G E, Osindero S, and Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部