摘要
针对低轨空间变光目标星像形态变化频繁且运动速度快,跟踪目标时很难准确捕获目标位置信息这一难点,提出卡尔曼滤波与Camshift相结合的目标跟踪方法。根据目标的难捕获特性,引入卡尔曼滤波外推对目标进行位置预测,用改进的Camshift跟踪目标,即基于灰度图像单通道的白色提取的目标跟踪方法,实现低轨变光目标稳健跟踪和提高目标捕获率;当目标与恒星瞬间相互遮挡时,用改进的遮挡目标预判方法进行位置预测,同时用卡尔曼滤波的预测位置代替Camshift计算出的目标位置,作为观测位置去更新卡尔曼滤波,实现遮挡目标稳健跟踪和提高目标捕获率。实验结果表明:跟踪目标的可变波门根据目标大小自适应调整,不仅可以实现中高轨目标稳定跟踪,而且对低轨变光目标具有稳健跟踪效果。当目标与恒星瞬间相互遮挡时能稳健跟踪目标,提高跟踪数据的有用率。该方法程序运行速率快,灵敏度高,适用性强,实时性好,具有很好的使用价值和广泛应用前景。
In view of the frequent shape changes and fast moving speed of low-orbit dimming targets,it is difficult to accurately capture the target position information when tracking the target,a target tracking method combining Kalman filter and Camshift is proposed.According to the difficulty of capturing the target,Kalman filter extrapolation is introduced to predict the position of the target,tracking target with improved Camshift.That is,the target tracking method of single-channel white extraction based on gray image,to achieve the robust tracking of low-orbit variable light target and improve the target capture rate;When the target and the star are occluded each other instantaneously,the improved occluded target prediction method is used to predict the position.At the same time,the predicted position of the Kalman filter is used to replace the target position calculated by Camshift as the observation position to update the Kalman filter,so as to realize the robust tracking of the occluded target and improve the target acquisition rate.The experimental results show that the variable gate of the tracking target is adjusted adaptively according to the size of the target.It not only realizes stable tracking of medium-high orbit targets,but also has robust tracking effect for low-orbit dimming targets.This method has the advantages of fast running speed,high sensitivity,strong applicability and good real-time performance,and has good application value and broad application prospects.
作者
王恩旺
陈晓林
王恩达
许占伟
钟胜
WANG En-wang;CHEN Xiao-lin;WANG En-da;XU Zhan-wei;ZHONG Sheng(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650031,China;Key Laboratory of Space Object and Debris Observation,Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210023,China;School of Information Scicnce and Technology,Qiongtai Normal University,Haikou 571127,China;School of Mathematics and Computer Science,Chuxiong Normal University,Chuxiong 675099,China;School of Arti cial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《天文学进展》
CSCD
北大核心
2023年第4期596-608,共13页
Progress In Astronomy
基金
国家自然科学基金(62062005)。