期刊文献+

基于国产异构计算平台的快速SVD算法及其在海洋资料同化的应用

A Fast SVD Algorithm Based on Domestic Heterogeneous Computing Platform and Its Application in Ocean Data Assimilation
下载PDF
导出
摘要 【目的】资料同化已经在大气和海洋的数值预报中发挥重要作用,它可以利用不同来源的观测资料对初始场数据进行修正,从而提高数值预报的准确性,目的在于通过奇异值分解(SVD)算法的改进提高基于国产异构计算平台的资料同化计算效率。【方法】本文在大规模计算环境下并行策略及实现方法基础上,设计并实现了基于国产异构计算平台的CPU和类GPU卡协同批量SVD解算的实现流程和数据结构,并给出了实际性能提升测试数据,同时,完整地使用C/C++实现了资料同化程序。【结果】该算法充分利用国产异构计算平台CPU和计算卡的计算资源,实现了基于SVD的矩阵求逆的高效实现算法,从基础算法上显著提高了资料同化的计算效率。【结论】基于国产异构计算平台CPU和计算卡协同方式的奇异值分解的高效实现算法,其应用可以扩展到量子计算、人工智能、图像处理、信号降噪等领域的算法实现,具有广泛的应用价值,使用C/C++语言的资料同化应用软件,丰富了国产异构计算平台的应用生态。 [Objective]Data assimilation has played an important role in numerical forecasting of the atmosphere and ocean.It can use observation data from different sources to modify initial field data,thereby improving the accuracy of numerical forecasting.The aim is to improve the efficiency of data assimilation calculation based on domestic heterogeneous computing platforms through the improvement of the SVD algorithm.[Methods]This article systematically describes the parallel strategy and implementation method in a large-scale environment,and designs and implements the implementation process and data structure of CPU and GPU-like accelerator collaborative batch SVD solution based on domestic heterogeneous computing platforms.It also provides actual performance improvement test data.At the same time,a complete data assimilation program is implemented using C/C++.[Results]This algorithm fully utilizes the computing resources,CPUs and computing cards of domestic heterogeneous computing platforms,achieving an efficient implementation algorithm for matrix inversion based on singular value decomposition(SVD),and significantly improving the computational efficiency of data assimilation from the basic algorithm.[Conclusions]The efficient implementation algorithm of singular value decomposition based on the collaborative approach of domestic heterogeneous computing platform CPU and computing card can be extended to algorithm implementation in fields such as quantum computing,artificial intelligence,image processing,and signal denoising,etc.It has high application value.The data assimilation application software using C/C++language enriches the application ecosystem of domestic heterogeneous computing platforms.
作者 李维钊 王伟 LI Weizhao;WANG Wei(Yihai Luyuan(Shandong)Digital Technology Co.,Ltd,Qingdao,Shandong 266237,China)
出处 《数据与计算发展前沿》 CSCD 2024年第1期35-45,共11页 Frontiers of Data & Computing
关键词 奇异值分解 国产异构计算平台 资料同化 数值预报 并行策略 Singular Value decomposition domestic heterogeneous computing platform data assimilation numerical forecasting parallel strategy
  • 相关文献

参考文献7

二级参考文献58

  • 1王博,李先国,张晓.Lustre文件系统的性能优化研究[J].微型电脑应用,2011(5):31-33. 被引量:4
  • 2马寨璞,井爱芹.海洋科学中的数据同化方法——意义、结构与发展现状[J].海岸工程,2005,24(4):83-99. 被引量:15
  • 3何卫列.基于Linux集群架构的MPI点对点通信研究[J].沈阳航空工业学院学报,2007,24(3):61-63. 被引量:1
  • 4Bertino L, Lisaeter K A. 2008. The TOPAZ monitoring and predic- tion system for the Atlantic and Arclic Ocereus [J]. Journal of Operational Oceanography, 2: 15- 18.
  • 5Bleck R. 2002. An oceanic general circulatiou model framed in hy brid isopycnic cartesian coordinates [J]. Ocean Modelling, 4:55 -88.
  • 6Bleck R, Smith L T. 1990. A wind driven isopycnic coordinate model of the north and equatorial Atlantic Ocean 1. Model devel- opment and supporting experiments [J]. J. Geophys. Res. , 95 (C3) : 3273 - 3285.
  • 7Buizza R, Palmer T N. 1995. The singular-vector structure of the atmospheric global circulation [J]. J. Atmos. Sci., 52.. 1434 - 1456.
  • 8Dowell D C, Zhang F, Wicker L J, et al. 2004. Wind and thermo dynamic retrievals in the 17 May 1981 Arcadia, Oklahoma super cell.. Ensemble Kalman filter experiments [J]. Mon. Wea. Rev., 132:1982-2005.
  • 9Epstein E S. 1969. Stochastic dynamic prediction [J]. Tellus (A), 21: 739 -759.
  • 10Evensen G. 1994. Sequential data assimilation with a nonlinear quasi geostrophic model using Monte Carlo methods to forecast error statistics [J]. J. Geophys. Res., 99 (C3): 10143 -10162.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部